XGBoost-Based Framework for Smoking-Induced Noncommunicable Disease Prediction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
- Simiao Chen & Michael Kuhn & Klaus Prettner & David E Bloom, 2018. "The macroeconomic burden of noncommunicable diseases in the United States: Estimates and projections," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
- Xiao Hu & Yang Wang & Jidong Huang & Rong Zheng, 2019. "Cigarette Affordability and Cigarette Consumption among Adult and Elderly Chinese Smokers: Evidence from A Longitudinal Study," IJERPH, MDPI, vol. 16(23), pages 1-20, December.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014.
"High-Dimensional Methods and Inference on Structural and Treatment Effects,"
Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 29-50, Spring.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers 59/13, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2013. "High dimensional methods and inference on structural and treatment effects," CeMMAP working papers CWP59/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Esra Zihni & Vince Istvan Madai & Michelle Livne & Ivana Galinovic & Ahmed A Khalil & Jochen B Fiebach & Dietmar Frey, 2020. "Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-15, April.
- Roman Salmerón Gómez & José García Pérez & María Del Mar López Martín & Catalina García García, 2016. "Collinearity diagnostic applied in ridge estimation through the variance inflation factor," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1831-1849, August.
- Rongjun Chen & Jinhui Lin, 2020. "Identification of feature risk pathways of smoking-induced lung cancer based on SVM," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
- Hyunju Dan & Jiyoung Kim & Oksoo Kim, 2020. "Effects of Gender and Age on Dietary Intake and Body Mass Index in Hypertensive Patients: Analysis of the Korea National Health and Nutrition Examination," IJERPH, MDPI, vol. 17(12), pages 1-9, June.
- Charles B Breckenridge & Colin Berry & Ellen T Chang & Robert L Sielken Jr. & Jack S Mandel, 2016. "Association between Parkinson’s Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-42, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kwang Ho Park & Erdenebileg Batbaatar & Yongjun Piao & Nipon Theera-Umpon & Keun Ho Ryu, 2021. "Deep Learning Feature Extraction Approach for Hematopoietic Cancer Subtype Classification," IJERPH, MDPI, vol. 18(4), pages 1-24, February.
- Cheuk-Kay Sun & Yun-Xuan Tang & Tzu-Chi Liu & Chi-Jie Lu, 2022. "An Integrated Machine Learning Scheme for Predicting Mammographic Anomalies in High-Risk Individuals Using Questionnaire-Based Predictors," IJERPH, MDPI, vol. 19(15), pages 1-17, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020.
"Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform,"
Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
- Christophe Croux & Julapa Jagtiani & Tarunsai Korivi & Milos Vulanovic, 2020. "Important Factors Determining Fintech Loan Default: Evidence from the LendingClub Consumer Platform," Working Papers 20-15, Federal Reserve Bank of Philadelphia.
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Gonzalez, Felipe & Prem, Mounu & von Dessauer, Cristine, 2023. "Empowerment or Indoctrination? Women Centers Under Dictatorship," SocArXiv 64mf9, Center for Open Science.
- Anil Kumar, 2018.
"Do Restrictions on Home Equity Extraction Contribute to Lower Mortgage Defaults? Evidence from a Policy Discontinuity at the Texas Border,"
American Economic Journal: Economic Policy, American Economic Association, vol. 10(1), pages 268-297, February.
- Anil Kumar, 2014. "Do restrictions on home equity extraction contribute to lower mortgage defaults? evidence from a policy discontinuity at the Texas border," Working Papers 1410, Federal Reserve Bank of Dallas.
- Ye, Ya-Fen & Shao, Yuan-Hai & Deng, Nai-Yang & Li, Chun-Na & Hua, Xiang-Yu, 2017. "Robust Lp-norm least squares support vector regression with feature selection," Applied Mathematics and Computation, Elsevier, vol. 305(C), pages 32-52.
- Ay, Jean-Sauveur & Le Gallo, Julie, 2021.
"The Signaling Values of Nested Wine Names,"
Working Papers
321851, American Association of Wine Economists.
- Jean-Sauveur Ay & Julie Le Gallo, 2021. "The signaling value of nested wine names," Post-Print hal-03268014, HAL.
- Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
- Yuexin Li & Xiaoyin Ma & Luc Renneboog, 2024.
"In Art We Trust,"
Management Science, INFORMS, vol. 70(1), pages 98-127, January.
- Li, Yuexin & Ma, X. & Renneboog, Luc, 2021. "In Art We Trust," Discussion Paper 2021-016, Tilburg University, Center for Economic Research.
- Li, Yuexin & Ma, X. & Renneboog, Luc, 2021. "In Art We Trust," Other publications TiSEM b9bb6522-9f8d-4c51-b039-3, Tilburg University, School of Economics and Management.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020.
"Optimal data collection for randomized control trials,"
The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 15/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers 45/17, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP15/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Carneiro, Pedro & Lee, Sokbae & Wilhelm, Daniel, 2016. "Optimal Data Collection for Randomized Control Trials," IZA Discussion Papers 9908, Institute of Labor Economics (IZA).
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2019. "Optimal Data Collection for Randomized Control Trials," CeMMAP working papers CWP21/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2016. "Optimal data collection for randomized control trials," CeMMAP working papers 15/16, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae (Simon) Lee & Daniel Wilhelm, 2017. "Optimal data collection for randomized control trials," CeMMAP working papers CWP45/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2016. "Optimal Data Collection for Randomized Control Trials," Papers 1603.03675, arXiv.org, revised Aug 2016.
- Bakx, Pieter & Wouterse, Bram & van Doorslaer, Eddy & Wong, Albert, 2020. "Better off at home? Effects of nursing home eligibility on costs, hospitalizations and survival," Journal of Health Economics, Elsevier, vol. 73(C).
- Reny Yuliati & Billy Koernianti Sarwono & Abdillah Ahsan & I Gusti Lanang Agung Kharisma Wibhisono & Dian Kusuma, 2021. "Effect of Message Approach and Image Size on Pictorial Health Warning Effectiveness on Cigarette Pack in Indonesia: A Mixed Factorial Experiment," IJERPH, MDPI, vol. 18(13), pages 1-11, June.
- Zhu, Manhong & Schmitz, Andrew & Schmitz, Troy G., "undated". "What are the Culprits Causing Obesity? A Machine Learning Approach in Variable Selection and Parameter Coefficient Inference," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 261220, Agricultural and Applied Economics Association.
- Andreas Wagner & Denise Fischer‐Kreer, 2024. "The role of CEO regulatory focus in increasing or reducing corporate carbon emissions," Business Strategy and the Environment, Wiley Blackwell, vol. 33(2), pages 1051-1065, February.
- Nelson, Kelly P. & Parton, Lee C. & Brown, Zachary S., 2022.
"Biofuels policy and innovation impacts: Evidence from biofuels and agricultural patent indicators,"
Energy Policy, Elsevier, vol. 162(C).
- Nelson, Kelly & Brown, Zachary S. & Parton, Lee, 2019. "Biofuels Policy and Innovation Impacts: Evidence from Biofuels and Agricultural Patent Indicators," 2019 Annual Meeting, July 21-23, Atlanta, Georgia 291243, Agricultural and Applied Economics Association.
- Sabrin Beg & Waqas Halim & Adrienne M. Lucas & Umar Saif, 2022.
"Engaging Teachers with Technology Increased Achievement, Bypassing Teachers Did Not,"
American Economic Journal: Economic Policy, American Economic Association, vol. 14(2), pages 61-90, May.
- Sabrin A. Beg & Adrienne M. Lucas & Waqas Halim & Umar Saif, 2019. "Engaging Teachers with Technology Increased Achievement, Bypassing Teachers Did Not," NBER Working Papers 25704, National Bureau of Economic Research, Inc.
- Michael C. Knaus, 2021.
"A double machine learning approach to estimate the effects of musical practice on student’s skills,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
- Knaus, Michael C., 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," IZA Discussion Papers 11547, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2018. "A Double Machine Learning Approach to Estimate the Effects of Musical Practice on Student's Skills," Papers 1805.10300, arXiv.org, revised Jan 2019.
- Clément de Chaisemartin & Nicolás Navarrete H., 2023.
"The Direct and Spillover Effects of a Nationwide Socioemotional Learning Program for Disruptive Students,"
Journal of Labor Economics, University of Chicago Press, vol. 41(3), pages 729-769.
- Cl'ement de Chaisemartin & Nicol'as Navarrete H., 2020. "The direct and spillover effects of a nationwide socio-emotional learning program for disruptive students," Papers 2004.08126, arXiv.org.
- Clement De Chaisemartin & Nicolás Navarrete, 2023. "The Direct and Spillover Effects of a Nationwide Socio-Emotional Learning Program for Disruptive Students," Post-Print hal-03796424, HAL.
- Clement De Chaisemartin & Nicolás Navarrete, 2023. "The Direct and Spillover Effects of a Nationwide Socio-Emotional Learning Program for Disruptive Students," SciencePo Working papers Main hal-03796424, HAL.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
More about this item
Keywords
smoking; noncommunicable disease; feature selection; extreme gradient boosting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6513-:d:410103. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.