IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0233445.html
   My bibliography  Save this article

Identification of feature risk pathways of smoking-induced lung cancer based on SVM

Author

Listed:
  • Rongjun Chen
  • Jinhui Lin

Abstract

Objective: The present study aims to explore the role of smoking factors in the risk of lung cancer and screen the feature risk pathways of smoking-induced lung cancer. Methods: The expression profiles of the patient data from GEO database were standardized, and differentially expressed genes (DEGs) were analyzed by limma algorithm. Samples and genes were analyzed by Unsupervised hierarchical clustering method, while GO and KEGG enrichment analyses were performed on DEGs. The data of the protein-protein interaction (PPI) network were downloaded from the BioGrid and HPRD databases, and the DEGs were mapped into the PPI network to identify the interaction relationship. The enriched significant pathways were used to calculate the anomaly score and RFE method was used to optimize the feature sets. The model was trained using the support vector machine (SVM) and the predicted results were plotted into ROC curves. The AUC value was calculated to evaluate the predictive performance of the SVM model. Results: A total of 1923 DEGs were obtained, of which 826 were down-regulated and 1097 were up-regulated. Unsupervised hierarchical clustering analysis showed that the diagnosis accuracy of lung cancer smokers was 74%, and that of non-lung cancer smokers was 75%. Five optimal feature pathway sets were obtained by screening, the clinical diagnostic ability of which was detected by SVM model with the accuracy improved to 84%. The diagnostic accuracy was 90% after combining clinical information. Conclusion: We verified that five signaling pathways combined with clinical information could be used as a feature risk pathway for identifying lung cancer smokers and non-lung cancer smokers and increased the diagnostic accuracy.

Suggested Citation

  • Rongjun Chen & Jinhui Lin, 2020. "Identification of feature risk pathways of smoking-induced lung cancer based on SVM," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-16, June.
  • Handle: RePEc:plo:pone00:0233445
    DOI: 10.1371/journal.pone.0233445
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233445
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0233445&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0233445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Min-Wei Huang & Chih-Wen Chen & Wei-Chao Lin & Shih-Wen Ke & Chih-Fong Tsai, 2017. "SVM and SVM Ensembles in Breast Cancer Prediction," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-14, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khishigsuren Davagdorj & Van Huy Pham & Nipon Theera-Umpon & Keun Ho Ryu, 2020. "XGBoost-Based Framework for Smoking-Induced Noncommunicable Disease Prediction," IJERPH, MDPI, vol. 17(18), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meshwa Rameshbhai Savalia & Jaiprakash Vinodkumar Verma, 2023. "Classifying Malignant and Benign Tumors of Breast Cancer: A Comparative Investigation Using Machine Learning Techniques," International Journal of Reliable and Quality E-Healthcare (IJRQEH), IGI Global, vol. 12(1), pages 1-19, January.
    2. Hosseinpour, Mahsa & Ghaemi, Sehraneh & Khanmohammadi, Sohrab & Daneshvar, Sabalan, 2022. "A hybrid high‐order type‐2 FCM improved random forest classification method for breast cancer risk assessment," Applied Mathematics and Computation, Elsevier, vol. 424(C).
    3. Liang Song & Shanjun Liu & Wenwen Li, 2019. "Quantitative Inversion of Fixed Carbon Content in Coal Gangue by Thermal Infrared Spectral Data," Energies, MDPI, vol. 12(9), pages 1-17, May.
    4. Cheong Kim & Francis Joseph Costello & Kun Chang Lee, 2019. "Integrating Qualitative Comparative Analysis and Support Vector Machine Methods to Reduce Passengers’ Resistance to Biometric E-Gates for Sustainable Airport Operations," Sustainability, MDPI, vol. 11(19), pages 1-22, September.
    5. Maryam Mahsal Khan & Alexandre Mendes & Stephan K Chalup, 2018. "Evolutionary Wavelet Neural Network ensembles for breast cancer and Parkinson’s disease prediction," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-15, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0233445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.