IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i16p5845-d398043.html
   My bibliography  Save this article

Geocoding Error, Spatial Uncertainty, and Implications for Exposure Assessment and Environmental Epidemiology

Author

Listed:
  • Ellen J. Kinnee

    (University Center for Social and Urban Research, University of Pittsburgh, Pittsburgh, PA 15260, USA)

  • Sheila Tripathy

    (Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, PA 19104, USA)

  • Leah Schinasi

    (Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, PA 19104, USA
    Drexel University Urban Health Collaborative (UHC), Drexel University Dornsife School of Public Health, Philadelphia, PA 19104, USA)

  • Jessie L. C. Shmool

    (Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15260, USA)

  • Perry E. Sheffield

    (Environmental Medicine and Public Health and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA)

  • Fernando Holguin

    (Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA)

  • Jane E. Clougherty

    (Department of Environmental and Occupational Health, Drexel University Dornsife School of Public Health, Philadelphia, PA 19104, USA)

Abstract

Although environmental epidemiology studies often rely on geocoding procedures in the process of assigning spatial exposure estimates, geocoding methods are not commonly reported, nor are consequent errors in exposure assignment explored. Geocoding methods differ in accuracy, however, and, given the increasing refinement of available exposure models for air pollution and other exposures, geocoding error may account for an increasingly larger proportion of exposure misclassification. We used residential addresses from a reasonably large, dense dataset of asthma emergency department visits from all New York City hospitals ( n = 21,183; 26.9 addresses/km 2 ), and geocoded each using three methods (Address Point, Street Segment, Parcel Centroid). We compared missingness and spatial patterning therein, quantified distance and directional errors, and quantified impacts on pollution exposure estimates and assignment to Census areas for sociodemographic characterization. Parcel Centroids had the highest overall missingness rate (38.1%, Address Point = 9.6%, Street Segment = 6.1%), and spatial clustering in missingness was significant for all methods, though its spatial patterns differed. Street Segment geocodes had the largest mean distance error (µ = 29.2 (SD = 26.2) m; vs. µ = 15.9 (SD = 17.7) m for Parcel Centroids), and the strongest spatial patterns therein. We found substantial over- and under-estimation of pollution exposures, with greater error for higher pollutant concentrations, but minimal impact on Census area assignment. Finally, we developed surfaces of spatial patterns in errors in order to identify locations in the study area where exposures may be over-/under-estimated. Our observations provide insights towards refining geocoding methods for epidemiology, and suggest methods for quantifying and interpreting geocoding error with respect to exposure misclassification, towards understanding potential impacts on health effect estimates.

Suggested Citation

  • Ellen J. Kinnee & Sheila Tripathy & Leah Schinasi & Jessie L. C. Shmool & Perry E. Sheffield & Fernando Holguin & Jane E. Clougherty, 2020. "Geocoding Error, Spatial Uncertainty, and Implications for Exposure Assessment and Environmental Epidemiology," IJERPH, MDPI, vol. 17(16), pages 1-23, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:16:p:5845-:d:398043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/16/5845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/16/5845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel A. Griffith, 2018. "Uncertainty and Context in Geography and GIScience: Reflections on Spatial Autocorrelation, Spatial Sampling, and Health Data," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 108(6), pages 1499-1505, November.
    2. Berens, Philipp, 2009. "CircStat: A MATLAB Toolbox for Circular Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i10).
    3. James W. Quinn & Stephen J. Mooney & Daniel M. Sheehan & Julien O. Teitler & Kathryn M. Neckerman & Tanya K. Kaufman & Gina S. Lovasi & Michael D. M. Bader & Andrew G. Rundle, 2016. "Neighborhood physical disorder in New York City," Journal of Maps, Taylor & Francis Journals, vol. 12(1), pages 53-60, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jared A. Fisher & Maya Spaur & Ian D. Buller & Abigail R. Flory & Laura E. Beane Freeman & Jonathan N. Hofmann & Michael Giangrande & Rena R. Jones & Mary H. Ward, 2021. "Spatial Heterogeneity in Positional Errors: A Comparison of Two Residential Geocoding Efforts in the Agricultural Health Study," IJERPH, MDPI, vol. 18(4), pages 1-13, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joshua M. Diamond & Julio I. Chapeton & Weizhen Xie & Samantha N. Jackson & Sara K. Inati & Kareem A. Zaghloul, 2024. "Focal seizures induce spatiotemporally organized spiking activity in the human cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    2. Kyerl Park & Yoonsoo Yeo & Kisung Shin & Jeehyun Kwag, 2024. "Egocentric neural representation of geometric vertex in the retrosplenial cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jennifer B Tennessen & Marla M Holt & Brianna M Wright & M Bradley Hanson & Candice K Emmons & Deborah A Giles & Jeffrey T Hogan & Sheila J Thornton & Volker B Deecke, 2023. "Divergent foraging strategies between populations of sympatric matrilineal killer whales," Behavioral Ecology, International Society for Behavioral Ecology, vol. 34(3), pages 373-386.
    4. Thomas Schreiner & Marit Petzka & Tobias Staudigl & Bernhard P. Staresina, 2023. "Respiration modulates sleep oscillations and memory reactivation in humans," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Thomas Schreiner & Elisabeth Kaufmann & Soheyl Noachtar & Jan-Hinnerk Mehrkens & Tobias Staudigl, 2022. "The human thalamus orchestrates neocortical oscillations during NREM sleep," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    6. Celia M. Gagliardi & Marc E. Normandin & Alexandra T. Keinath & Joshua B. Julian & Matthew R. Lopez & Manuel-Miguel Ramos-Alvarez & Russell A. Epstein & Isabel A. Muzzio, 2024. "Distinct neural mechanisms for heading retrieval and context recognition in the hippocampus during spatial reorientation," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    7. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    8. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    9. Thomas Schreiner & Benjamin J. Griffiths & Merve Kutlu & Christian Vollmar & Elisabeth Kaufmann & Stefanie Quach & Jan Remi & Soheyl Noachtar & Tobias Staudigl, 2024. "Spindle-locked ripples mediate memory reactivation during human NREM sleep," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    11. Alexis T Baria & Brian Maniscalco & Biyu J He, 2017. "Initial-state-dependent, robust, transient neural dynamics encode conscious visual perception," PLOS Computational Biology, Public Library of Science, vol. 13(11), pages 1-29, November.
    12. Matthijs J. Warrens & Bunga C. Pratiwi, 2016. "Kappa Coefficients for Circular Classifications," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 507-522, October.
    13. Lombard, F. & Hawkins, Douglas M. & Potgieter, Cornelis J., 2017. "Sequential rank CUSUM charts for angular data," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 268-279.
    14. Masataka Sawayama & Shin'ya Nishida, 2018. "Material and shape perception based on two types of intensity gradient information," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-40, April.
    15. Aguiar-Conraria, Luis & Martins, Manuel M.F. & Soares, Maria Joana, 2018. "Estimating the Taylor rule in the time-frequency domain," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 122-137.
    16. Assaf Breska & Leon Y Deouell, 2017. "Neural mechanisms of rhythm-based temporal prediction: Delta phase-locking reflects temporal predictability but not rhythmic entrainment," PLOS Biology, Public Library of Science, vol. 15(2), pages 1-30, February.
    17. Sunny Nigam & Russell Milton & Sorin Pojoga & Valentin Dragoi, 2023. "Adaptive coding across visual features during free-viewing and fixation conditions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Chinnakkaruppan Adaikkan & Justin Joseph & Georgios Foustoukos & Jun Wang & Denis Polygalov & Roman Boehringer & Steven J. Middleton & Arthur J. Y. Huang & Li-Huei Tsai & Thomas J. McHugh, 2024. "Silencing CA1 pyramidal cells output reveals the role of feedback inhibition in hippocampal oscillations," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Daniel S. Kluger & Carina Forster & Omid Abbasi & Nikos Chalas & Arno Villringer & Joachim Gross, 2023. "Modulatory dynamics of periodic and aperiodic activity in respiration-brain coupling," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    20. Manuela Costa & Diego Lozano-Soldevilla & Antonio Gil-Nagel & Rafael Toledano & Carina R. Oehrn & Lukas Kunz & Mar Yebra & Costantino Mendez-Bertolo & Lennart Stieglitz & Johannes Sarnthein & Nikolai , 2022. "Aversive memory formation in humans involves an amygdala-hippocampus phase code," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:16:p:5845-:d:398043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.