Detection and Correction of Abnormal IoT Data from Tea Plantations Based on Deep Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Xue-Feng Wang & Xiao-Ming Sun & Yang Fang, 2008. "Genetic Algorithm Solution For Multi-Period Two-Echelon Integrated Competitive/Uncompetitive Facility Location Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(01), pages 33-56.
- Xue-Bo Jin & Xing-Hong Yu & Xiao-Yi Wang & Yu-Ting Bai & Ting-Li Su & Jian-Lei Kong, 2020. "Deep Learning Predictor for Sustainable Precision Agriculture Based on Internet of Things System," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Widad Elouataoui & Saida El Mendili & Youssef Gahi, 2023. "An Automated Big Data Quality Anomaly Correction Framework Using Predictive Analysis," Data, MDPI, vol. 8(12), pages 1-22, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huo, Dongyang & Malik, Asad Waqar & Ravana, Sri Devi & Rahman, Anis Ur & Ahmedy, Ismail, 2024. "Mapping smart farming: Addressing agricultural challenges in data-driven era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Xue-Bo Jin & Wen-Tao Gong & Jian-Lei Kong & Yu-Ting Bai & Ting-Li Su, 2022. "PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data," Mathematics, MDPI, vol. 10(4), pages 1-17, February.
- E. Kahya & F. F. Ozduven & Y. Aslan, 2024. "YOLOv5 Model Application in Real-Time Robotic Eggplant Harvesting," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 16(2), pages 1-9, February.
- Muhammad Fahad & Tariq Javid & Hira Beenish & Adnan Ahmed Siddiqui & Ghufran Ahmed, 2021. "Extending ONTAgri with Service-Oriented Architecture towards Precision Farming Application," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
- Hawon Chu & Jaeseong Kim & Seounghyeon Kim & Young-Kyoon Suh & Ryong Lee & Rae-Young Jang & Minwoo Park, 2020. "ST-Trie: A Novel Indexing Scheme for Efficiently Querying Heterogeneous, Spatiotemporal IoT Data," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
- Görkem Giray & Cagatay Catal, 2021. "Design of a Data Management Reference Architecture for Sustainable Agriculture," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
- Alessandro Scuderi & Giovanni La Via & Giuseppe Timpanaro & Luisa Sturiale, 2022. "The Digital Applications of “Agriculture 4.0”: Strategic Opportunity for the Development of the Italian Citrus Chain," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
- Yi Yang & Yuting Bai & Xiaoyi Wang & Li Wang & Xuebo Jin & Qian Sun, 2020. "Group Decision-Making Support for Sustainable Governance of Algal Bloom in Urban Lakes," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
- Soheil Davari, 2019. "The incremental cooperative design of preventive healthcare networks," Annals of Operations Research, Springer, vol. 272(1), pages 445-492, January.
- Ayfer Basar & Özgür Kabak & Y. Ilker Topcu, 2017. "A Decision Support Methodology for Locating Bank Branches: A Case Study in Turkey," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 59-86, January.
- Yan Guo & Xiaonan Hu & Zepeng Wang & Wei Tang & Deyu Liu & Yunzhong Luo & Hongxiang Xu, 2021. "The butterfly effect in the price of agricultural products: A multidimensional spatial-temporal association mining," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 67(11), pages 457-467.
- Tao Zhen & Lei Yan & Jian-lei Kong, 2020. "An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection," IJERPH, MDPI, vol. 17(16), pages 1-17, August.
- Krzysztof Lalik & Jakub Kozak & Szymon Podlasek & Mateusz Kozek, 2022. "Self-Powered Wireless Sensor Matrix for Air Pollution Detection with a Neural Predictor," Energies, MDPI, vol. 15(6), pages 1-26, March.
More about this item
Keywords
tea plantation; deep learning; data feature extraction; data correction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:2:p:480-:d:1071924. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.