IDEAS home Printed from https://ideas.repec.org/a/hin/complx/4760297.html
   My bibliography  Save this article

Walking Gait Phase Detection Based on Acceleration Signals Using Voting-Weighted Integrated Neural Network

Author

Listed:
  • Lei Yan
  • Tao Zhen
  • Jian-Lei Kong
  • Lian-Ming Wang
  • Xiao-Lei Zhou

Abstract

Human gait phase recognition is a significant technology for rehabilitation training robot, human disease diagnosis, artificial prosthesis, and so on. The efficient design of the recognition method for gait information is the key issue in the current gait phase division and eigenvalues extraction research. In this paper, a novel voting-weighted integrated neural network (VWI-DNN) is proposed to detect different gait phases from multidimensional acceleration signals. More specifically, it first employs a gait information acquisition system to collect different IMU sensors data fixed on the human lower limb. Then, with dimensionality reduction and four-phase division preprocessing, key features are selected and merged as unified vectors to learn common and domain knowledge in time domain. Next, multiple refined DNNs are transferred to design a multistream integrated neural network, which utilizes the mixture-granularity information to exploit high-dimensional feature representative. Finally, a voting-weighted function is developed to fuse different submodels as a unified representation for distinguishing small discrepancy among different gait phases. The end-to-end implementation of the VWI-DNN model is fine-tuned by the loss optimization of gradient back-propagation. Experimental results demonstrate the outperforming performance of the proposed method with higher classification accuracy compared with the other methods, of which classification accuracy and macro-F1 is up to 99.5%. More discussions are provided to indicate the potential applications in combination with other works.

Suggested Citation

  • Lei Yan & Tao Zhen & Jian-Lei Kong & Lian-Ming Wang & Xiao-Lei Zhou, 2020. "Walking Gait Phase Detection Based on Acceleration Signals Using Voting-Weighted Integrated Neural Network," Complexity, Hindawi, vol. 2020, pages 1-14, January.
  • Handle: RePEc:hin:complx:4760297
    DOI: 10.1155/2020/4760297
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/8503/2020/4760297.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/8503/2020/4760297.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2020/4760297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tao Zhen & Lei Yan & Jian-lei Kong, 2020. "An Acceleration Based Fusion of Multiple Spatiotemporal Networks for Gait Phase Detection," IJERPH, MDPI, vol. 17(16), pages 1-17, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:complx:4760297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.