IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2019i1p229-d302786.html
   My bibliography  Save this article

Spatiotemporal Variations and Factors of Air Quality in Urban Central China during 2013–2015

Author

Listed:
  • Mao Mao

    (Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Xiaolin Zhang

    (Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Yamei Shao

    (Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

  • Yan Yin

    (Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing 210044, China)

Abstract

Spatiotemporal behaviors of particulate matter (PM 2.5 and PM 10 ) and trace gases (SO 2 , NO 2 , CO, and O 3 ) in Hefei during the period from December 2013 to November 2015 are investigated. The mean annual PM 2.5 (PM 10 ) concentrations are 89.1 ± 59.4 µg/m 3 (118.9 ± 66.8 µg/m 3 ) and 61.6 ± 32.2 µg/m 3 (91.3 ± 40.9 µg/m 3 ) during 2014 and 2015, respectively, remarkably exceeding the Chinese Ambient Air Quality Standards (CAAQS) grade II. All trace gases basically meet the requirements though NO 2 and O 3 have a certain upward trend. Old districts have the highest pollution levels, followed by urban periphery sites and new districts. Severe haze pollution occurs in Hefei, with frequent exceedances in particulate matter with 178 (91) days in 2014 (2015). The abnormal PM 2.5 concentrations in June 2014 attributed to agricultural biomass burning from moderate resolution imaging spectroradiometry (MODIS) wildfire maps and aerosol optical depth (AOD) analysis. PM 2.5 is recognized as the major pollutant, and a longer interspecies relationship is found between PM 2.5 and other criteria pollutants for episode days as compared to non-episode days. The air pollution in Hefei tends to be influenced by local primary emissions, secondary formation, and regional transport from adjacent cities and remote regions. Most areas of Anhui, southern Jiangsu, northern Zhejiang, and western Shandong are identified as the common high-potential source regions of PM 2.5 . Approximately 9.44 and 8.53 thousand premature mortalities are attributed to PM 2.5 exposure in 2014 and 2015. The mortality benefits will be 32% (24%), 47% (41%), 70% (67%), and 85% (83%) of the total premature mortalities in 2014 (2015) when PM 2.5 concentrations meet the CAAQS grade II, the World Health Organization (WHO) IT-2, IT-3, and Air Quality Guideline, respectively. Hence, joint pollution prevention and control measures need to be strengthened due to pollutant regional diffusion, and much higher health benefits could be achieved as the Hefei government adopts more stringent WHO guidelines for PM 2.5 .

Suggested Citation

  • Mao Mao & Xiaolin Zhang & Yamei Shao & Yan Yin, 2019. "Spatiotemporal Variations and Factors of Air Quality in Urban Central China during 2013–2015," IJERPH, MDPI, vol. 17(1), pages 1-18, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:229-:d:302786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongyang Nie & Mindong Chen & Yun Wu & Xinlei Ge & Jianlin Hu & Kai Zhang & Pengxiang Ge, 2018. "Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing," IJERPH, MDPI, vol. 15(4), pages 1-12, March.
    2. Mao Mao & Xiaolin Zhang & Yan Yin, 2018. "Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications," IJERPH, MDPI, vol. 15(6), pages 1-29, May.
    3. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nishit Aman & Kasemsan Manomaiphiboon & Natchanok Pala-En & Eakkachai Kokkaew & Tassana Boonyoo & Suchart Pattaramunikul & Bikash Devkota & Chakrit Chotamonsak, 2020. "Evolution of Urban Haze in Greater Bangkok and Association with Local Meteorological and Synoptic Characteristics during Two Recent Haze Episodes," IJERPH, MDPI, vol. 17(24), pages 1-18, December.
    2. Nishit Aman & Kasemsan Manomaiphiboon & Natchanok Pala-En & Bikash Devkota & Muanfun Inerb & Eakkachai Kokkaew, 2023. "A Study of Urban Haze and Its Association with Cold Surge and Sea Breeze for Greater Bangkok," IJERPH, MDPI, vol. 20(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mao Mao & Haofei Sun & Xiaolin Zhang, 2020. "Air Pollution Characteristics and Health Risks in the Yangtze River Economic Belt, China during Winter," IJERPH, MDPI, vol. 17(24), pages 1-17, December.
    2. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    3. Héctor Jorquera & Ana María Villalobos, 2020. "Combining Cluster Analysis of Air Pollution and Meteorological Data with Receptor Model Results for Ambient PM 2.5 and PM 10," IJERPH, MDPI, vol. 17(22), pages 1-25, November.
    4. Ellen Banzhaf & Sally Anderson & Gwendoline Grandin & Richard Hardiman & Anne Jensen & Laurence Jones & Julius Knopp & Gregor Levin & Duncan Russel & Wanben Wu & Jun Yang & Marianne Zandersen, 2022. "Urban-Rural Dependencies and Opportunities to Design Nature-Based Solutions for Resilience in Europe and China," Land, MDPI, vol. 11(4), pages 1-25, March.
    5. Rogers Kanee & Precious Ede & Omosivie Maduka & Golden Owhonda & Eric Aigbogun & Khalaf F. Alsharif & Ahmed H. Qasem & Shadi S. Alkhayyat & Gaber El-Saber Batiha, 2021. "Polycyclic Aromatic Hydrocarbon Levels in Wistar Rats Exposed to Ambient Air of Port Harcourt, Nigeria: An Indicator for Tissue Toxicity," IJERPH, MDPI, vol. 18(11), pages 1-21, May.
    6. Hongjun Yu & Jiali Cheng & Shelby Paige Gordon & Ruopeng An & Miao Yu & Xiaodan Chen & Qingli Yue & Jun Qiu, 2018. "Impact of Air Pollution on Sedentary Behavior: A Cohort Study of Freshmen at a University in Beijing, China," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    7. Stefani Kulebanova & Jana Prodanova & Aleksandra Dedinec & Trifce Sandev & Desheng Wu & Ljupco Kocarev, 2024. "Media Sentiment on Air Pollution: Seasonal Trends in Relation to PM10 Levels," Sustainability, MDPI, vol. 16(15), pages 1-20, July.
    8. Sowmya Malamardi & Katrina A. Lambert & Attahalli Shivanarayanaprasad Praveena & Mahesh Padukudru Anand & Bircan Erbas, 2022. "Time Trends of Greenspaces, Air Pollution, and Asthma Prevalence among Children and Adolescents in India," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    9. Malayaranjan Sahoo & Narayan Sethi, 2022. "The dynamic impact of urbanization, structural transformation, and technological innovation on ecological footprint and PM2.5: evidence from newly industrialized countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4244-4277, March.
    10. Liu, Haoming & Salvo, Alberto, 2017. "Severe Air Pollution and School Absences: Longitudinal Data on Expatriates in North China," IZA Discussion Papers 11134, Institute of Labor Economics (IZA).
    11. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    12. K. K. Shukla & Raju Attada & Aman W. Khan & Prashant Kumar, 2022. "Evaluation of extreme dust storm over the northwest Indo-Gangetic plain using WRF-Chem model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1887-1910, February.
    13. Shichun Xu & Wenwen Zhang & Qinbin Li & Bin Zhao & Shuxiao Wang & Ruyin Long, 2017. "Decomposition Analysis of the Factors that Influence Energy Related Air Pollutant Emission Changes in China Using the SDA Method," Sustainability, MDPI, vol. 9(10), pages 1-18, September.
    14. Bedoya-Maya, Felipe & Calatayud, Agustina & González Mejia, Vileydy, 2022. "Estimating the effect of urban road congestion on air quality in Latin America," IDB Publications (Working Papers) 12468, Inter-American Development Bank.
    15. Ling-Yun He & Xiao-Feng Qi, 2021. "Environmental Courts, Environment and Employment: Evidence from China," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    16. Wang, Qiang & Kwan, Mei-Po & Zhou, Kan & Fan, Jie & Wang, Yafei & Zhan, Dongsheng, 2019. "Impacts of residential energy consumption on the health burden of household air pollution: Evidence from 135 countries," Energy Policy, Elsevier, vol. 128(C), pages 284-295.
    17. Weicong Fu & Qunyue Liu & Cecil Konijnendijk van den Bosch & Ziru Chen & Zhipeng Zhu & Jinda Qi & Mo Wang & Emily Dang & Jianwen Dong, 2018. "Long-Term Atmospheric Visibility Trends and Their Relations to Socioeconomic Factors in Xiamen City, China," IJERPH, MDPI, vol. 15(10), pages 1-16, October.
    18. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    19. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    20. Shen Zhao & Yong Xu, 2019. "Exploring the Spatial Variation Characteristics and Influencing Factors of PM 2.5 Pollution in China: Evidence from 289 Chinese Cities," Sustainability, MDPI, vol. 11(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:229-:d:302786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.