IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i20p3991-d278156.html
   My bibliography  Save this article

Influence of Neighborhood Environment on Korean Adult Obesity Using a Bayesian Spatial Multilevel Model

Author

Listed:
  • Eun Young Lee

    (Institute for Health and Society, Hanyang University, Seoul 04763, Korea
    Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea)

  • Sugie Lee

    (Department of Urban Planning and Engineering, Hanyang University, Seoul 04763, Korea)

  • Bo Youl Choi

    (Institute for Health and Society, Hanyang University, Seoul 04763, Korea
    Department of Preventive Medicine, College of Medicine, Hanyang University, Seoul 04763, Korea)

  • Jungsoon Choi

    (Department of Mathematics, Hanyang University, Seoul 04763, Korea)

Abstract

Previous studies using spatial statistical modeling that account for spatial associations between geographic areas are scarce. Therefore, this study examines the association between neighborhood environment and obesity using a Bayesian spatial multilevel model. Data from 78,014 adults living in Gyeonggi province in Korea were drawn from the 2013–2014 Korean Community Health Survey. Korean government databases and ArcGIS software (version 10.1, ESRI, Redlands, CA) were used to measure the neighborhood environment for 546 administrative districts of Gyeonggi province. A Bayesian spatial multilevel model was implemented across gender and age groups. The findings indicate that women aged 19–39 years who lived in neighborhoods farthest away from parks were more likely to be obese. Men aged 40–59 years who lived in neighborhoods farther from public physical activity facilities and with lower population density were more likely to be obese. Obesity for women aged 19–39 years was the most spatially dependent, while obesity for women aged 40–59 years was the least spatially dependent. The results suggest that neighborhood environments that provide more opportunities for physical activity are negatively related to obesity. Therefore, the creation of physical activity in favorable neighborhood environments, considering gender and age, may be a valuable strategy to reduce obesity.

Suggested Citation

  • Eun Young Lee & Sugie Lee & Bo Youl Choi & Jungsoon Choi, 2019. "Influence of Neighborhood Environment on Korean Adult Obesity Using a Bayesian Spatial Multilevel Model," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3991-:d:278156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/20/3991/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/20/3991/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hee-Jung Jun & Mi Namgung, 2018. "Gender Difference and Spatial Heterogeneity in Local Obesity," IJERPH, MDPI, vol. 15(2), pages 1-17, February.
    2. Jin-Won Noh & Minkyung Jo & Taewook Huh & Jooyoung Cheon & Young Dae Kwon, 2014. "Gender Differences and Socioeconomic Status in Relation to Overweight among Older Korean People," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-9, May.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Steffen Andreas Schüle & Gabriele Bolte, 2015. "Interactive and Independent Associations between the Socioeconomic and Objective Built Environment on the Neighbourhood Level and Individual Health: A Systematic Review of Multilevel Studies," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-31, April.
    5. Hruby, A. & Manson, J.E. & Qi, L. & Malik, V.S. & Rimm, E.B. & Sun, Q. & Willett, W.C. & Hu, F.B., 2016. "Determinants and consequences of obesity," American Journal of Public Health, American Public Health Association, vol. 106(9), pages 1656-1662.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oshan, Taylor M. & Smith, Jordan & Fotheringham, Alexander Stewart, 2020. "Targeting the spatial context of obesity determinants via multiscale geographically weighted regression," OSF Preprints u7j29_v1, Center for Open Science.
    2. Eun Young Lee & Jungsoon Choi & Sugie Lee & Bo Youl Choi, 2021. "Objectively Measured Built Environments and Cardiovascular Diseases in Middle-Aged and Older Korean Adults," IJERPH, MDPI, vol. 18(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    4. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    5. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    6. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    7. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    8. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    9. Edwin Fourrier-Nicolai & Michel Lubrano, 2022. "Bayesian inference for non-anonymous Growth Incidence Curves using Bernstein polynomials: an application to academic wage dynamics," AMSE Working Papers 2227, Aix-Marseille School of Economics, France.
    10. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    11. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    12. repec:jss:jstsof:21:i08 is not listed on IDEAS
    13. Deng, Yaguo, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    15. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    16. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    17. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    18. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    19. Mi Namgung & B. Elizabeth Mercado Gonzalez & Seungwoo Park, 2019. "The Role of Built Environment on Health of Older Adults in Korea: Obesity and Gender Differences," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    20. Chaix, Basile & Jouven, Xavier & Thomas, Frédérique & Leal, Cinira & Billaudeau, Nathalie & Bean, Kathy & Kestens, Yan & Jëgo, Bertrand & Pannier, Bruno & Danchin, Nicolas, 2011. "Why socially deprived populations have a faster resting heart rate: Impact of behaviour, life course anthropometry, and biology – the RECORD Cohort Study," Social Science & Medicine, Elsevier, vol. 73(10), pages 1543-1550.
    21. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3991-:d:278156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.