IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/u7j29_v1.html
   My bibliography  Save this paper

Targeting the spatial context of obesity determinants via multiscale geographically weighted regression

Author

Listed:
  • Oshan, Taylor M.
  • Smith, Jordan
  • Fotheringham, Alexander Stewart

Abstract

Background: Obesity rates are recognized to be at epidemic levels throughout much of the world, posing significant threats to both the health and financial security of many nations. The causes of obesity can vary but are often complex and multifactorial, and while many contributing factors can be targeted for intervention, an understanding of where these interventions are needed is necessary in order to implement effective policy. This has prompted an interest in incorporating spatial context into the analysis and modeling of obesity determinants, especially through the use of geographically weighted regression (GWR). Method: This paper provides a critical review of previous GWR models of obesogenic processes and then presents a novel application of multiscale (M)GWR using the Phoenix metropolitan area as a case study. Results: Though the MGWR model consumes more degrees of freedom than OLS, it consumes far fewer degrees of freedom than GWR, ultimately resulting in a more nuanced analysis that can incorporate spatial context but does not force every relationship to become local a priori. In addition, MGWR yields a lower AIC and AICc value than GWR and is also less prone to issues of multicollinearity. Consequently, MGWR is able to improve our understanding of the factors that influence obesity rates by providing determinant-specific spatial contexts. Conclusion: The results show that a mix of global and local processes are able to best model obesity rates and that MGWR provides a richer yet more parsimonious quantitative representation of obesity rate determinants compared to both GWR and ordinary least squares.

Suggested Citation

  • Oshan, Taylor M. & Smith, Jordan & Fotheringham, Alexander Stewart, 2020. "Targeting the spatial context of obesity determinants via multiscale geographically weighted regression," OSF Preprints u7j29_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:u7j29_v1
    DOI: 10.31219/osf.io/u7j29_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/5e66615b0f987d0385495f71/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/u7j29_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:u7j29_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.