IDEAS home Printed from https://ideas.repec.org/a/adp/jgjorm/v6y2019i4p91-94.html
   My bibliography  Save this article

Reproductive Factors of Dengue and Chlamydia

Author

Listed:
  • Kiran Raj Awasthi

    (Program Manager- Malaria program, Save the Children International, Nepal)

  • Mamata Sherpa Awasthi

    (Department of Nursing, Janamaitri Foundation Institute of Health Sciences, Nepal)

Abstract

Dengue is a common mosquito borne infectious disease often occurring in tropical and subtropical climates caused by single stranded positive RNA viruses (DENV1-4) of the genus Flavivarus and family Flaviviridae while Chlamydia is a STD commonly prevalent in industrialized countries and is caused by Chlamydia trachomatis, a gram negative bacteria.

Suggested Citation

  • Kiran Raj Awasthi & Mamata Sherpa Awasthi, 2019. "Reproductive Factors of Dengue and Chlamydia," Global Journal of Reproductive Medicine, Juniper Publishers Inc., vol. 6(4), pages 91-942:6, May.
  • Handle: RePEc:adp:jgjorm:v:6:y:2019:i:4:p:91-94
    DOI: 10.19080/GJORM.2019.06.555695
    as

    Download full text from publisher

    File URL: https://juniperpublishers.com/gjorm/pdf/GJORM.MS.ID.555695.pdf
    Download Restriction: no

    File URL: https://juniperpublishers.com/gjorm/GJORM.MS.ID.555695.php
    Download Restriction: no

    File URL: https://libkey.io/10.19080/GJORM.2019.06.555695?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Miranda Chan & Michael A Johansson, 2012. "The Incubation Periods of Dengue Viruses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazi Mizanur Rahman & Yushuf Sharker & Reza Ali Rumi & Mahboob-Ul Islam Khan & Mohammad Sohel Shomik & Muhammad Waliur Rahman & Sk Masum Billah & Mahmudur Rahman & Peter Kim Streatfield & David Harley, 2020. "An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study," IJERPH, MDPI, vol. 17(24), pages 1-9, December.
    2. Ayu Rahayu & Utari Saraswati & Endah Supriyati & Dian Aruni Kumalawati & Rio Hermantara & Anwar Rovik & Edwin Widyanto Daniwijaya & Iva Fitriana & Sigit Setyawan & Riris Andono Ahmad & Dwi Satria Ward, 2019. "Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti," IJERPH, MDPI, vol. 16(10), pages 1-12, May.
    3. Víctor Hugo Peña-García & Omar Triana-Chávez & Ana María Mejía-Jaramillo & Francisco J. Díaz & Andrés Gómez-Palacio & Sair Arboleda-Sánchez, 2016. "Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities," IJERPH, MDPI, vol. 13(7), pages 1-16, July.
    4. Bao-Linh Tran & Wei-Chun Tseng & Chi-Chung Chen & Shu-Yi Liao, 2020. "Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    5. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    6. Rotem Ben-Shachar & Scott Schmidler & Katia Koelle, 2016. "Drivers of Inter-individual Variation in Dengue Viral Load Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-26, November.
    7. Prasad Liyanage & Hasitha Tissera & Maquins Sewe & Mikkel Quam & Ananda Amarasinghe & Paba Palihawadana & Annelies Wilder-Smith & Valérie R. Louis & Yesim Tozan & Joacim Rocklöv, 2016. "A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka," IJERPH, MDPI, vol. 13(11), pages 1-21, November.
    8. Yun Lan & Sophie Wilhelmina Leur & Julia Ayano Fernando & Ho Him Wong & Martin Kampmann & Lewis Siu & Jingshu Zhang & Mingyuan Li & John M. Nicholls & Sumana Sanyal, 2023. "Viral subversion of selective autophagy is critical for biogenesis of virus replication organelles," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Joshua G X Wong & Tun Linn Thein & Yee-Sin Leo & Junxiong Pang & David C Lye, 2016. "Identifying Adult Dengue Patients at Low Risk for Clinically Significant Bleeding," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-12, February.
    10. Mateus C, Rafael & Zuluaga, Susana Alvarez & Orozco, Mariajose Franco & Marín, Paula Alejandra Escudero, 2021. "Modeling the propagation of the Dengue, Zika and Chikungunya virus in the city of Bello using Agent-Based Modeling and Simulation," OSF Preprints wmxzd, Center for Open Science.
    11. David Murillo & Anarina Murillo & Sunmi Lee, 2019. "The Role of Vertical Transmission in the Control of Dengue Fever," IJERPH, MDPI, vol. 16(5), pages 1-17, March.
    12. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    13. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    15. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    16. Ndii, Meksianis Z. & Allingham, David & Hickson, R.I. & Glass, Kathryn, 2016. "The effect of Wolbachia on dengue outbreaks when dengue is repeatedly introduced," Theoretical Population Biology, Elsevier, vol. 111(C), pages 9-15.
    17. Bhalotra, Sonia & Rocha, Rudi & Facchini, Gabriel & Menezes, Aline, 2019. "Productivity effects of dengue in Brazil," ISER Working Paper Series 2019-04, Institute for Social and Economic Research.
    18. Jundi Liu & Yu Deng & Qinlong Jing & Xiashi Chen & Zhicheng Du & Tianzhu Liang & Zhicong Yang & Dingmei Zhang & Yuantao Hao, 2018. "Dengue Infection Spectrum in Guangzhou: A Cross-Sectional Seroepidemiology Study among Community Residents between 2013 and 2015," IJERPH, MDPI, vol. 15(6), pages 1-11, June.
    19. Christopher Fitzpatrick & Alexander Haines & Mathieu Bangert & Andrew Farlow & Janet Hemingway & Raman Velayudhan, 2017. "An economic evaluation of vector control in the age of a dengue vaccine," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(8), pages 1-27, August.
    20. Dennis L Chao & Ira M Longini Jr & M Elizabeth Halloran, 2013. "The Effects of Vector Movement and Distribution in a Mathematical Model of Dengue Transmission," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-6, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adp:jgjorm:v:6:y:2019:i:4:p:91-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Thomas (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.