IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i10p12391-12411d56759.html
   My bibliography  Save this article

Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce

Author

Listed:
  • Dhafer Alsalah

    (Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

  • Nada Al-Jassim

    (Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

  • Kenda Timraz

    (Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

  • Pei-Ying Hong

    (Water Desalination and Reuse Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia)

Abstract

This study examines the groundwater quality in wells situated near agricultural fields in Saudi Arabia. Fruits (e.g., tomato and green pepper) irrigated with groundwater were also assessed for the occurrence of opportunistic pathogens to determine if food safety was compromised by the groundwater. The amount of total nitrogen in most of the groundwater samples exceeded the 15 mg/L permissible limit for agricultural irrigation. Fecal coliforms in densities > 12 MPN/100 mL were detected in three of the groundwater wells that were in close proximity to a chicken farm. These findings, coupled with qPCR-based fecal source tracking, show that groundwater in wells D and E, which were nearest to the chicken farm, had compromised quality. Anthropogenic contamination resulted in a shift in the predominant bacterial phyla within the groundwater microbial communities. For example, there was an elevated presence of Proteobacteria and Cyanobacteria in wells D and E but a lower overall microbial richness in the groundwater perturbed by anthropogenic contamination. In the remaining wells, the genus Acinetobacter was detected at high relative abundance ranging from 1.5% to 48% of the total groundwater microbial community. However, culture-based analysis did not recover any antibiotic-resistant bacteria or opportunistic pathogens from these groundwater samples. In contrast, opportunistic pathogenic Enterococcus faecalis and Pseudomonas aeruginosa were isolated from the fruits irrigated with the groundwater from wells B and F. Although the groundwater was compromised, quantitative microbial risk assessment suggests that the annual risk incurred from accidental consumption of E. faecalis on these fruits was within the acceptable limit of 10 −4 . However, the annual risk arising from P. aeruginosa was 9.55 × 10 −4 , slightly above the acceptable limit. Our findings highlight that the groundwater quality at this agricultural site in western Saudi Arabia is not pristine and that better agricultural management practices are needed alongside groundwater treatment strategies to improve food safety.

Suggested Citation

  • Dhafer Alsalah & Nada Al-Jassim & Kenda Timraz & Pei-Ying Hong, 2015. "Assessing the Groundwater Quality at a Saudi Arabian Agricultural Site and the Occurrence of Opportunistic Pathogens on Irrigated Food Produce," IJERPH, MDPI, vol. 12(10), pages 1-21, October.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:12391-12411:d:56759
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/10/12391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/10/12391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Saleh Al-Sefry & Zekai Şen, 2006. "Groundwater Rise Problem and Risk Evaluation in Major Cities of Arid Lands – Jedddah Case in Kingdom of Saudi Arabia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 91-108, February.
    2. S. Leininger & T. Urich & M. Schloter & L. Schwark & J. Qi & G. W. Nicol & J. I. Prosser & S. C. Schuster & C. Schleper, 2006. "Archaea predominate among ammonia-oxidizing prokaryotes in soils," Nature, Nature, vol. 442(7104), pages 806-809, August.
    3. International Water Management Institute (IWMI)., 2007. "Does food trade save water?: the potential role of food trade in water scarcity mitigation," IWMI Water Policy Briefings H039845, International Water Management Institute.
    4. International Water Management Institute (IWMI), 2007. "Does food trade save water?: the potential role of food trade in water scarcity mitigation," IWMI Water Policy Briefings 113014, International Water Management Institute.
    5. Maryn McKenna, 2013. "Antibiotic resistance: The last resort," Nature, Nature, vol. 499(7459), pages 394-396, July.
    6. A. Hoekstra & A. Chapagain, 2007. "Water footprints of nations: Water use by people as a function of their consumption pattern," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 35-48, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ursula Triebswetter & Johann Wackerbauer, 2010. "Water - a substantial location factor for the Bavarian economy," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 47.
    2. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    3. A. Yang & G. Huang & X. Qin, 2010. "An Integrated Simulation-Assessment Approach for Evaluating Health Risks of Groundwater Contamination Under Multiple Uncertainties," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3349-3369, October.
    4. Lucia Mancini, 2013. "Conventional, Organic and Polycultural Farming Practices: Material Intensity of Italian Crops and Foodstuffs," Resources, MDPI, vol. 2(4), pages 1-23, December.
    5. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    6. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    7. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Kehinde Abraham Odelade & Olubukola Oluranti Babalola, 2019. "Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    9. Kaltenegger, Oliver & Löschel, Andreas & Pothen, Frank, 2017. "The effect of globalisation on energy footprints: Disentangling the links of global value chains," Energy Economics, Elsevier, vol. 68(S1), pages 148-168.
    10. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    11. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    12. Maite Aldaya & Pedro Martínez-Santos & M. Llamas, 2010. "Incorporating the Water Footprint and Virtual Water into Policy: Reflections from the Mancha Occidental Region, Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 941-958, March.
    13. Emilio José Delgado-Algarra & Isabel María Román Sánchez & Eva Ordóñez Olmedo & Antonio Alejandro Lorca-Marín, 2019. "International MOOC Trends in Citizenship, Participation and Sustainability: Analysis of Technical, Didactic and Content Dimensions," Sustainability, MDPI, vol. 11(20), pages 1-19, October.
    14. White, Robin R. & Brady, Michael & Capper, Judith L. & Johnson, Kristen A., 2014. "Optimizing diet and pasture management to improve sustainability of U.S. beef production," Agricultural Systems, Elsevier, vol. 130(C), pages 1-12.
    15. S. Brown & H. Schreier & L. Lavkulich, 2009. "Incorporating Virtual Water into Water Management: A British Columbia Example," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2681-2696, October.
    16. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    17. Wiedmann, Thomas, 2009. "A first empirical comparison of energy Footprints embodied in trade -- MRIO versus PLUM," Ecological Economics, Elsevier, vol. 68(7), pages 1975-1990, May.
    18. Gawel, Erik & Bernsen, Kristina, 2011. "What is wrong with virtual water trading?," UFZ Discussion Papers 1/2011, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    19. Asma Souissi & Nadhem Mtimet & Chokri Thabet & Talel Stambouli & Ali Chebil, 2019. "Impact of food consumption on water footprint and food security in Tunisia," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 11(5), pages 989-1008, October.
    20. Edward S. Spang & Bret D. Stevens, 2018. "Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation," Sustainability, MDPI, vol. 10(8), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:12391-12411:d:56759. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.