IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4421-d982224.html
   My bibliography  Save this article

Metaheuristic Optimization for Improving Weed Detection in Wheat Images Captured by Drones

Author

Listed:
  • El-Sayed M. El-Kenawy

    (Department of Communications and Electronics, Delta Higher Institute of Engineering and Technology, Mansoura 35111, Egypt)

  • Nima Khodadadi

    (Department of Civil and Environmental Engineering, Florida International University, Miami, FL, USA)

  • Seyedali Mirjalili

    (Centre for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane QLD 4006, Australia
    Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea)

  • Tatiana Makarovskikh

    (Department of System Programming, South Ural State University, Chelyabinsk, Russia)

  • Mostafa Abotaleb

    (Department of System Programming, South Ural State University, Chelyabinsk, Russia)

  • Faten Khalid Karim

    (Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Hend K. Alkahtani

    (Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

  • Abdelaziz A. Abdelhamid

    (Department of Computer Science, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt)

  • Marwa M. Eid

    (Faculty of Artificial Intelligence, Delta University for Science and Technology, Mansoura, Egypt)

  • Takahiko Horiuchi

    (Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan)

  • Abdelhameed Ibrahim

    (Computer Engineering and Control Systems Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Doaa Sami Khafaga

    (Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

Abstract

Background and aim: Machine learning methods are examined by many researchers to identify weeds in crop images captured by drones. However, metaheuristic optimization is rarely used in optimizing the machine learning models used in weed classification. Therefore, this research targets developing a new optimization algorithm that can be used to optimize machine learning models and ensemble models to boost the classification accuracy of weed images. Methodology: This work proposes a new approach for classifying weed and wheat images captured by a sprayer drone. The proposed approach is based on a voting classifier that consists of three base models, namely, neural networks (NNs), support vector machines (SVMs), and K-nearest neighbors (KNN). This voting classifier is optimized using a new optimization algorithm composed of a hybrid of sine cosine and grey wolf optimizers. The features used in training the voting classifier are extracted based on AlexNet through transfer learning. The significant features are selected from the extracted features using a new feature selection algorithm. Results: The accuracy, precision, recall, false positive rate, and kappa coefficient were employed to assess the performance of the proposed voting classifier. In addition, a statistical analysis is performed using the one-way analysis of variance (ANOVA), and Wilcoxon signed-rank tests to measure the stability and significance of the proposed approach. On the other hand, a sensitivity analysis is performed to study the behavior of the parameters of the proposed approach in achieving the recorded results. Experimental results confirmed the effectiveness and superiority of the proposed approach when compared to the other competing optimization methods. The achieved detection accuracy using the proposed optimized voting classifier is 97.70%, F-score is 98.60%, specificity is 95.20%, and sensitivity is 98.40%. Conclusion: The proposed approach is confirmed to achieve better classification accuracy and outperforms other competing approaches.

Suggested Citation

  • El-Sayed M. El-Kenawy & Nima Khodadadi & Seyedali Mirjalili & Tatiana Makarovskikh & Mostafa Abotaleb & Faten Khalid Karim & Hend K. Alkahtani & Abdelaziz A. Abdelhamid & Marwa M. Eid & Takahiko Horiu, 2022. "Metaheuristic Optimization for Improving Weed Detection in Wheat Images Captured by Drones," Mathematics, MDPI, vol. 10(23), pages 1-30, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4421-:d:982224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelaziz A. Abdelhamid & El-Sayed M. El-Kenawy & Nima Khodadadi & Seyedali Mirjalili & Doaa Sami Khafaga & Amal H. Alharbi & Abdelhameed Ibrahim & Marwa M. Eid & Mohamed Saber, 2022. "Classification of Monkeypox Images Based on Transfer Learning and the Al-Biruni Earth Radius Optimization Algorithm," Mathematics, MDPI, vol. 10(19), pages 1-29, October.
    2. Nahina Islam & Md Mamunur Rashid & Santoso Wibowo & Cheng-Yuan Xu & Ahsan Morshed & Saleh A. Wasimi & Steven Moore & Sk Mostafizur Rahman, 2021. "Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shakeel Ahmed, 2023. "A Software Framework for Predicting the Maize Yield Using Modified Multi-Layer Perceptron," Sustainability, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Costello & Olusegun O. Osunkoya & Juan Sandino & William Marinic & Peter Trotter & Boyang Shi & Felipe Gonzalez & Kunjithapatham Dhileepan, 2022. "Detection of Parthenium Weed ( Parthenium hysterophorus L.) and Its Growth Stages Using Artificial Intelligence," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
    2. Marwa M. Eid & El-Sayed M. El-Kenawy & Nima Khodadadi & Seyedali Mirjalili & Ehsaneh Khodadadi & Mostafa Abotaleb & Amal H. Alharbi & Abdelaziz A. Abdelhamid & Abdelhameed Ibrahim & Ghada M. Amer & Am, 2022. "Meta-Heuristic Optimization of LSTM-Based Deep Network for Boosting the Prediction of Monkeypox Cases," Mathematics, MDPI, vol. 10(20), pages 1-20, October.
    3. Vasileios Moysiadis & Georgios Kokkonis & Stamatia Bibi & Ioannis Moscholios & Nikolaos Maropoulos & Panagiotis Sarigiannidis, 2023. "Monitoring Mushroom Growth with Machine Learning," Agriculture, MDPI, vol. 13(1), pages 1-17, January.
    4. Shirin Ghatrehsamani & Gaurav Jha & Writuparna Dutta & Faezeh Molaei & Farshina Nazrul & Mathieu Fortin & Sangeeta Bansal & Udit Debangshi & Jasmine Neupane, 2023. "Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    5. Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
    6. Benjamin T. Fraser & Christine L. Bunyon & Sarah Reny & Isabelle Sophia Lopez & Russell G. Congalton, 2022. "Analysis of Unmanned Aerial System (UAS) Sensor Data for Natural Resource Applications: A Review," Geographies, MDPI, vol. 2(2), pages 1-38, June.
    7. Sidrah Mumtaz & Mudassar Raza & Ofonime Dominic Okon & Saeed Ur Rehman & Adham E. Ragab & Hafiz Tayyab Rauf, 2023. "A Hybrid Framework for Detection and Analysis of Leaf Blight Using Guava Leaves Imaging," Agriculture, MDPI, vol. 13(3), pages 1-22, March.
    8. Xinle Zhang & Jian Cui & Huanjun Liu & Yongqi Han & Hongfu Ai & Chang Dong & Jiaru Zhang & Yunxiang Chu, 2023. "Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm," Agriculture, MDPI, vol. 13(1), pages 1-16, January.
    9. Haotian Pei & Youqiang Sun & He Huang & Wei Zhang & Jiajia Sheng & Zhiying Zhang, 2022. "Weed Detection in Maize Fields by UAV Images Based on Crop Row Preprocessing and Improved YOLOv4," Agriculture, MDPI, vol. 12(7), pages 1-18, July.
    10. Nur Adibah Mohidem & Nik Norasma Che’Ya & Abdul Shukor Juraimi & Wan Fazilah Fazlil Ilahi & Muhammad Huzaifah Mohd Roslim & Nursyazyla Sulaiman & Mohammadmehdi Saberioon & Nisfariza Mohd Noor, 2021. "How Can Unmanned Aerial Vehicles Be Used for Detecting Weeds in Agricultural Fields?," Agriculture, MDPI, vol. 11(10), pages 1-27, October.
    11. Mohammed Aljebreen & Hanan Abdullah Mengash & Fadoua Kouki & Abdelwahed Motwakel, 2023. "Improved Artificial Ecosystem Optimizer with Deep-Learning-Based Insect Detection and Classification for Agricultural Sector," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    12. Ameera S. Jaradat & Rabia Emhamed Al Mamlook & Naif Almakayeel & Nawaf Alharbe & Ali Saeed Almuflih & Ahmad Nasayreh & Hasan Gharaibeh & Mohammad Gharaibeh & Ali Gharaibeh & Hanin Bzizi, 2023. "Automated Monkeypox Skin Lesion Detection Using Deep Learning and Transfer Learning Techniques," IJERPH, MDPI, vol. 20(5), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4421-:d:982224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.