IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i9p2580-d228284.html
   My bibliography  Save this article

Evaluation of Regression Analysis and Neural Networks to Predict Total Suspended Solids in Water Bodies from Unmanned Aerial Vehicle Images

Author

Listed:
  • Tainá T. Guimarães

    (Graduate Programme in Environmental Engineering Sciences, São Carlos Engineering School, University of São Paulo, São Carlos 13566-590, Brazil)

  • Maurício R. Veronez

    (Advanced Visualization & Geoinformatics Lab—VizLab, Unisinos University, São Leopoldo 93022-750, Brazil
    Graduate Programme in Applied Computing, Unisinos University, São Leopoldo 93022-750, Brazil
    Graduate Programme in Biology, Unisinos University, São Leopoldo 93022-750, Brazil)

  • Emilie C. Koste

    (Advanced Visualization & Geoinformatics Lab—VizLab, Unisinos University, São Leopoldo 93022-750, Brazil)

  • Eniuce M. Souza

    (Advanced Visualization & Geoinformatics Lab—VizLab, Unisinos University, São Leopoldo 93022-750, Brazil
    Graduate Programme in Applied Computing, Unisinos University, São Leopoldo 93022-750, Brazil)

  • Diego Brum

    (Advanced Visualization & Geoinformatics Lab—VizLab, Unisinos University, São Leopoldo 93022-750, Brazil
    Graduate Programme in Applied Computing, Unisinos University, São Leopoldo 93022-750, Brazil)

  • Luiz Gonzaga

    (Advanced Visualization & Geoinformatics Lab—VizLab, Unisinos University, São Leopoldo 93022-750, Brazil
    Graduate Programme in Applied Computing, Unisinos University, São Leopoldo 93022-750, Brazil)

  • Frederico F. Mauad

    (Graduate Programme in Environmental Engineering Sciences, São Carlos Engineering School, University of São Paulo, São Carlos 13566-590, Brazil)

Abstract

The concentration of suspended solids in water is one of the quality parameters that can be recovered using remote sensing data. This paper investigates the data obtained using a sensor coupled to an unmanned aerial vehicle (UAV) in order to estimate the concentration of suspended solids in a lake in southern Brazil based on the relation of spectral images and limnological data. The water samples underwent laboratory analysis to determine the concentration of total suspended solids (TSS). The images obtained using the UAV were orthorectified and georeferenced so that the values referring to the near, green, and blue infrared channels were collected at each sampling point to relate with the laboratory data. The prediction of the TSS concentration was performed using regression analysis and artificial neural networks. The obtained results were important for two main reasons. First, although regression methods have been used in remote sensing applications, they may not be adequate to capture the linear and/or non-linear relationships of interest. Second, results show that the integration of UAV in the mapping of water bodies together with the application of neural networks in the data analysis is a promising approach to predict TSS as well as their temporal and spatial variations.

Suggested Citation

  • Tainá T. Guimarães & Maurício R. Veronez & Emilie C. Koste & Eniuce M. Souza & Diego Brum & Luiz Gonzaga & Frederico F. Mauad, 2019. "Evaluation of Regression Analysis and Neural Networks to Predict Total Suspended Solids in Water Bodies from Unmanned Aerial Vehicle Images," Sustainability, MDPI, vol. 11(9), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2580-:d:228284
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/9/2580/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/9/2580/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tainá T. Guimarães & Maurício R. Veronez & Emilie C. Koste & Luiz Gonzaga & Fabiane Bordin & Leonardo C. Inocencio & Ana Paula C. Larocca & Marcelo Z. De Oliveira & Dalva C. Vitti & Frederico F. Mauad, 2017. "An Alternative Method of Spatial Autocorrelation for Chlorophyll Detection in Water Bodies Using Remote Sensing," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    2. Qiaozhen Guo & Xiaoxu Wu & Qixuan Bing & Yingyang Pan & Zhiheng Wang & Ying Fu & Dongchuan Wang & Jianing Liu, 2016. "Study on Retrieval of Chlorophyll-a Concentration Based on Landsat OLI Imagery in the Haihe River, China," Sustainability, MDPI, vol. 8(8), pages 1-15, August.
    3. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    4. Jamil Amanollahi & Shahram Kaboodvandpour & Hiva Majidi, 2017. "Evaluating the accuracy of ANN and LR models to estimate the water quality in Zarivar International Wetland, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1511-1527, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin T. Fraser & Christine L. Bunyon & Sarah Reny & Isabelle Sophia Lopez & Russell G. Congalton, 2022. "Analysis of Unmanned Aerial System (UAS) Sensor Data for Natural Resource Applications: A Review," Geographies, MDPI, vol. 2(2), pages 1-38, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    2. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    4. Alfredo Valdes Ramos & Elsa N. Aguilera Gonzalez & Gloria Tobón Echeverri & Luis Samaniego Moreno & Lourdes Díaz Jiménez & Salvador Carlos Hernández, 2019. "Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    5. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    6. Hwanjo Chung & Seunghwan Wi & Byoung-Kwan Cho & Hoonsoo Lee, 2024. "Classification of Garlic ( Allium sativum L.) Crops by Fertilizer Differences Using Ground-Based Hyperspectral Imaging System," Agriculture, MDPI, vol. 14(8), pages 1-20, July.
    7. Fullana-Pericàs, Mateu & Conesa, Miquel À. & Gago, Jorge & Ribas-Carbó, Miquel & Galmés, Jeroni, 2022. "High-throughput phenotyping of a large tomato collection under water deficit: Combining UAVs’ remote sensing with conventional leaf-level physiologic and agronomic measurements," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    9. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    10. Longo-Minnolo, G. & Vanella, D. & Consoli, S. & Intrigliolo, D.S. & Ramírez-Cuesta, J.M., 2020. "Integrating forecast meteorological data into the ArcDualKc model for estimating spatially distributed evapotranspiration rates of a citrus orchard," Agricultural Water Management, Elsevier, vol. 231(C).
    11. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    12. Ihuoma, Samuel O. & Madramootoo, Chandra A., 2019. "Crop reflectance indices for mapping water stress in greenhouse grown bell pepper," Agricultural Water Management, Elsevier, vol. 219(C), pages 49-58.
    13. Xi Zhu & Yansha Wen & Xiang Li & Feng Yan & Shuhe Zhao, 2023. "Remote Sensing Inversion of Typical Water Quality Parameters of a Complex River Network: A Case Study of Qidong’s Rivers," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
    14. Miguel Ángel Matus-Hernández & Norma Yolanda Hernández-Saavedra & Raúl Octavio Martínez-Rincón, 2018. "Predictive performance of regression models to estimate Chlorophyll-a concentration based on Landsat imagery," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-18, October.
    15. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    16. Pôças, I. & Calera, A. & Campos, I. & Cunha, M., 2020. "Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches," Agricultural Water Management, Elsevier, vol. 233(C).
    17. Graciele Angnes & Adriano Valentim Diotto & Efthymios Rodias & Thiago Libório Romanelli, 2023. "Water and Carbon Footprints of Biomass Production Assets: Drip and Center Pivot Irrigation Systems," Sustainability, MDPI, vol. 15(10), pages 1-13, May.
    18. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    19. Mohamed Mouafik & Abdelghani Chakhchar & Mounir Fouad & Ahmed El Aboudi, 2024. "Remote Sensing Technologies for Monitoring Argane Forest Stands: A Comprehensive Review," Geographies, MDPI, vol. 4(3), pages 1-21, July.
    20. Gu, Nan & Zhang, Jianyun & Wang, Guoqing & Liu, Cuishan & Wang, Zhenlong & Lü, Haishen, 2022. "An atmospheric and soil thermal-based wheat crop coefficient method using additive crop growth models," Agricultural Water Management, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:9:p:2580-:d:228284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.