A Hybrid Framework for Detection and Analysis of Leaf Blight Using Guava Leaves Imaging
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Nahina Islam & Md Mamunur Rashid & Santoso Wibowo & Cheng-Yuan Xu & Ahsan Morshed & Saleh A. Wasimi & Steven Moore & Sk Mostafizur Rahman, 2021. "Early Weed Detection Using Image Processing and Machine Learning Techniques in an Australian Chilli Farm," Agriculture, MDPI, vol. 11(5), pages 1-13, April.
- Afshan Latif & Aqsa Rasheed & Umer Sajid & Jameel Ahmed & Nouman Ali & Naeem Iqbal Ratyal & Bushra Zafar & Saadat Hanif Dar & Muhammad Sajid & Tehmina Khalil, 2019. "Content-Based Image Retrieval and Feature Extraction: A Comprehensive Review," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-21, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
- Lu, Qing-Long & Mahajan, Vishal & Lyu, Cheng & Antoniou, Constantinos, 2024. "Analyzing the impact of fare-free public transport policies on crowding patterns at stations using crowdsensing data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
- Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
- Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- El-Sayed M. El-Kenawy & Nima Khodadadi & Seyedali Mirjalili & Tatiana Makarovskikh & Mostafa Abotaleb & Faten Khalid Karim & Hend K. Alkahtani & Abdelaziz A. Abdelhamid & Marwa M. Eid & Takahiko Horiu, 2022. "Metaheuristic Optimization for Improving Weed Detection in Wheat Images Captured by Drones," Mathematics, MDPI, vol. 10(23), pages 1-30, November.
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Benjamin Costello & Olusegun O. Osunkoya & Juan Sandino & William Marinic & Peter Trotter & Boyang Shi & Felipe Gonzalez & Kunjithapatham Dhileepan, 2022. "Detection of Parthenium Weed ( Parthenium hysterophorus L.) and Its Growth Stages Using Artificial Intelligence," Agriculture, MDPI, vol. 12(11), pages 1-23, November.
- Theodorou, Evangelos & Wang, Shengjie & Kang, Yanfei & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2022. "Exploring the representativeness of the M5 competition data," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1500-1506.
- Vasileios Moysiadis & Georgios Kokkonis & Stamatia Bibi & Ioannis Moscholios & Nikolaos Maropoulos & Panagiotis Sarigiannidis, 2023. "Monitoring Mushroom Growth with Machine Learning," Agriculture, MDPI, vol. 13(1), pages 1-17, January.
- Shirin Ghatrehsamani & Gaurav Jha & Writuparna Dutta & Faezeh Molaei & Farshina Nazrul & Mathieu Fortin & Sangeeta Bansal & Udit Debangshi & Jasmine Neupane, 2023. "Artificial Intelligence Tools and Techniques to Combat Herbicide Resistant Weeds—A Review," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
- Naudé, Wim & Bray, Amy & Lee, Celina, 2021. "Crowdsourcing Artificial Intelligence in Africa: Findings from a Machine Learning Contest," IZA Discussion Papers 14545, Institute of Labor Economics (IZA).
- Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
- Li, Libo & Yu, Huan & Kunc, Martin, 2024. "The impact of forum content on data science open innovation performance: A system dynamics-based causal machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Xianguo Ren & Haiqing Tian & Kai Zhao & Dapeng Li & Ziqing Xiao & Yang Yu & Fei Liu, 2022. "Research on pH Value Detection Method during Maize Silage Secondary Fermentation Based on Computer Vision," Agriculture, MDPI, vol. 12(10), pages 1-17, October.
- Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Genov, Evgenii & Cauwer, Cedric De & Kriekinge, Gilles Van & Coosemans, Thierry & Messagie, Maarten, 2024. "Forecasting flexibility of charging of electric vehicles: Tree and cluster-based methods," Applied Energy, Elsevier, vol. 353(PA).
More about this item
Keywords
AlexNet; BGWO; CNN; DarkNet-53; deep learning; entropy; KNN; ROI; SVM; YCbCr;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:13:y:2023:i:3:p:667-:d:1095888. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.