IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v56y2011i3p733-747.html
   My bibliography  Save this article

Assessment of satellite-based rainfall estimates in urban areas in different geographic and climatic regions

Author

Listed:
  • Woo Han
  • Steven Burian
  • J. Shepherd

Abstract

This paper presents an assessment of the 3B42 research version rainfall product from NASA’s Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (TMPA). The study provides new results of TMPA data accuracy in urban areas and highlights trends associated with the climatological indicators of temperature and relative humidity in cities. Ten years (1998-2007) of TMPA data were analyzed for three case study cities in the United States (Houston, Atlanta, and Las Vegas) and one in Korea (Cheongju), representing semi-arid to humid climates. At each location, an urbanized river basin and non-urbanized river basin were selected and comparisons between TMPA and rain gage observations were made for recorded storm events in the study period, the largest storm events by total depth, and selected hurricanes and topical storms. The results indicate TMPA data match well with rain gage observations at all locations. TMPA is slightly underestimated for semi-arid regions and overestimated for humid regions. The relative magnitude of TMPA rain event accumulation compared to rain gage accumulation is noted to be smaller for urbanized watersheds and high intensity events. The correlation of TMPA accuracy with temperature and relative humidity and the analysis of accuracy by season indicate TMPA is more accurate for convective rainfall events. This suggests a possible linkage between the observed urban-modified temperatures, hypothesized enhanced convection, and improved TMPA accuracy in urban areas. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Woo Han & Steven Burian & J. Shepherd, 2011. "Assessment of satellite-based rainfall estimates in urban areas in different geographic and climatic regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 733-747, March.
  • Handle: RePEc:spr:nathaz:v:56:y:2011:i:3:p:733-747
    DOI: 10.1007/s11069-010-9585-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9585-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9585-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang Hong & Robert Adler & Andrew Negri & George Huffman, 2007. "Flood and landslide applications of near real-time satellite rainfall products," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 285-294, November.
    2. Scott Curtis & Thomas Crawford & Scott Lecce, 2007. "A comparison of TRMM to other basin-scale estimates of rainfall during the 1999 Hurricane Floyd flood," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 187-198, November.
    3. Faisal Hossain & Nitin Katiyar & Yang Hong & Aaron Wolf, 2007. "The emerging role of satellite rainfall data in improving the hydro-political situation of flood monitoring in the under-developed regions of the world," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 199-210, November.
    4. Guleid Artan & Hussein Gadain & Jodie Smith & Kwabena Asante & Christina Bandaragoda & James Verdin, 2007. "Adequacy of satellite derived rainfall data for stream flow modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(2), pages 167-185, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios Katsanos & Adrianos Retalis & Filippos Tymvios & Silas Michaelides, 2016. "Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 53-63, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robyn Johnston & Vladimir Smakhtin, 2014. "Hydrological Modeling of Large river Basins: How Much is Enough?," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2695-2730, August.
    2. Rajesh Khatakho & Dipendra Gautam & Komal Raj Aryal & Vishnu Prasad Pandey & Rajesh Rupakhety & Suraj Lamichhane & Yi-Chung Liu & Khameis Abdouli & Rocky Talchabhadel & Bhesh Raj Thapa & Rabindra Adhi, 2021. "Multi-Hazard Risk Assessment of Kathmandu Valley, Nepal," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    3. Weili Duan & Bin He & Kaoru Takara & Pingping Luo & Daniel Nover & Yosuke Yamashiki & Wenrui Huang, 2014. "Anomalous atmospheric events leading to Kyushu’s flash floods, July 11–14, 2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1255-1267, September.
    4. Ekrem Canli & Bernd Loigge & Thomas Glade, 2018. "Spatially distributed rainfall information and its potential for regional landslide early warning systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 103-127, April.
    5. Gabriela Werren & Emmanuel Reynard & Stuart N. Lane & Daniela Balin, 2016. "Flood hazard assessment and mapping in semi-arid piedmont areas: a case study in Beni Mellal, Morocco," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 481-511, March.
    6. Mahmood, Asif & Hossain, Faisal, 2017. "Feasibility of managed domestic rainwater harvesting in South Asian rural areas using remote sensing," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 157-168.
    7. Md Abul Ehsan Bhuiyan & Feifei Yang & Nishan Kumar Biswas & Saiful Haque Rahat & Tahneen Jahan Neelam, 2020. "Machine Learning-Based Error Modeling to Improve GPM IMERG Precipitation Product over the Brahmaputra River Basin," Forecasting, MDPI, vol. 2(3), pages 1-19, July.
    8. Gabriela Werren & Emmanuel Reynard & Stuart Lane & Daniela Balin, 2016. "Flood hazard assessment and mapping in semi-arid piedmont areas: a case study in Beni Mellal, Morocco," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 481-511, March.
    9. Richard Petritsch & Hubert Hasenauer, 2014. "Climate input parameters for real-time online risk assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(3), pages 1749-1762, February.
    10. Amarnath, Giriraj & Simons, G. W. H. & Alahacoon, Niranga & Smakhtin, V. & Sharma, Bharat & Gismalla, Y. & Mohammed, Y. & Andrie, M. C. M., 2018. "Using smart ICT to provide weather and water information to smallholders in Africa: the case of the Gash River Basin, Sudan," Papers published in Journals (Open Access), International Water Management Institute, pages 22:52-66.
    11. Senayi Dönmez & Ahmet Emre Tekeli, 2017. "Comparison of TRMM-based flood indices for Gaziantep, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 821-834, September.
    12. Ahmet Emre Tekeli & Hesham Fouli, 2017. "Reducing False Flood Warnings of TRMM Rain Rates Thresholds over Riyadh City, Saudi Arabia by Utilizing AMSR-E Soil Moisture Information," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1243-1256, March.
    13. Michael Friedel, 2008. "Regularized joint inverse estimation of extreme rainfall amounts in ungauged coastal basins of El Salvador," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 15-34, July.

    More about this item

    Keywords

    Tropical Rainfall Measuring Mission; Urban;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:56:y:2011:i:3:p:733-747. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.