IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i2p96-d63445.html
   My bibliography  Save this article

Elimination of the Inrush Current Phenomenon Associated with Single-Phase Offline UPS Systems

Author

Listed:
  • Syed Sabir Hussain Bukhari

    (Deptartment of Electronic Systems Engineering, Hanyang University ERICA, Ansan 426-791, Korea)

  • Shahid Atiq

    (Deptartment of Electronic Systems Engineering, Hanyang University ERICA, Ansan 426-791, Korea)

  • Byung-il Kwon

    (Deptartment of Electronic Systems Engineering, Hanyang University ERICA, Ansan 426-791, Korea)

Abstract

Critical load applications always rely on UPS systems to uphold continuous power during abnormal grid conditions. In case of any power disruption, an offline UPS system starts powering the load to avoid blackout. However, this process can root the momentous inrush current for the transformer installed before the load. The consequences of inrush current can be the reduction of output voltage and tripping of protective devices of the UPS system. Furthermore, it can also damage the sensitive load and decrease the transformer’s lifetime. To prevent the inrush current, and to avoid its disruptive effects, this research suggests an offline UPS system based on a current regulated inverter that eliminates the inrush current while powering the transformer coupled loads. A detailed comparative analysis of the conventional and proposed topologies is presented and the experiment was performed by using a small prototype to validate the performance, and operation of the proposed topology.

Suggested Citation

  • Syed Sabir Hussain Bukhari & Shahid Atiq & Byung-il Kwon, 2016. "Elimination of the Inrush Current Phenomenon Associated with Single-Phase Offline UPS Systems," Energies, MDPI, vol. 9(2), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:96-:d:63445
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/2/96/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/2/96/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Zhang & Minying Li & Yong Kang, 2014. "PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling," Energies, MDPI, vol. 7(12), pages 1-20, November.
    2. Jelena Loncarski & Mats Leijon & Milan Srndovic & Claudio Rossi & Gabriele Grandi, 2015. "Comparison of Output Current Ripple in Single and Dual Three-Phase Inverters for Electric Vehicle Motor Drives," Energies, MDPI, vol. 8(5), pages 1-17, April.
    3. Xiaobo Dou & Kang Yang & Xiangjun Quan & Qinran Hu & Zaijun Wu & Bo Zhao & Peng Li & Shizhan Zhang & Yang Jiao, 2015. "An Optimal PR Control Strategy with Load Current Observer for a Three-Phase Voltage Source Inverter," Energies, MDPI, vol. 8(8), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Sathishkumar & T. N. V. Krishna & Himanshu & Muhammad Adil Khan & Kamran Zeb & Hee-Je Kim, 2018. "Digital Soft Start Implementation for Minimizing Start Up Transients in High Power DAB-IBDC Converter," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. Syed Sabir Hussain Bukhari & Shahid Atiq & Thomas A. Lipo & Byung-il Kwon, 2016. "Asymmetrical Fault Correction for the Sensitive Loads Using a Current Regulated Voltage Source Inverter," Energies, MDPI, vol. 9(3), pages 1-14, March.
    3. Juan Carlos Iglesias-Rojas & Erick Velázquez-Lozada & Roberto Baca-Arroyo, 2022. "Online Failure Diagnostic in Full-Bridge Module for Optimum Setup of an IGBT-Based Multilevel Inverter," Energies, MDPI, vol. 15(14), pages 1-14, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md Ragib Ahssan & Mehran Ektesabi & Saman Gorji, 2020. "Gear Ratio Optimization along with a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle," Energies, MDPI, vol. 13(19), pages 1-24, September.
    2. Rizka Bimarta & Thuy Vi Tran & Kyeong-Hwa Kim, 2018. "Frequency-Adaptive Current Controller Design Based on LQR State Feedback Control for a Grid-Connected Inverter under Distorted Grid," Energies, MDPI, vol. 11(10), pages 1-29, October.
    3. Botong Li & Jianfei Jia & Shimin Xue, 2016. "Study on the Current-Limiting-Capable Control Strategy for Grid-Connected Three-Phase Four-Leg Inverter in Low-Voltage Network," Energies, MDPI, vol. 9(9), pages 1-18, September.
    4. Junhui Li & Tianyang Zhang & Lei Qi & Gangui Yan, 2017. "A Method for the Realization of an Interruption Generator Based on Voltage Source Converters," Energies, MDPI, vol. 10(10), pages 1-19, October.
    5. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.
    6. Gabriele Grandi & Jelena Loncarski & Milan Srndovic, 2016. "Analysis and Minimization of Output Current Ripple for Discontinuous Pulse-Width Modulation Techniques in Three-Phase Inverters," Energies, MDPI, vol. 9(5), pages 1-23, May.
    7. Shailendra Rajput & Eliyahu Farber & Moshe Averbukh, 2021. "Optimal Selection of Asynchronous Motor-Gearhead Couple Fed by VFD for Electrified Vehicle Propulsion," Energies, MDPI, vol. 14(14), pages 1-20, July.
    8. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    9. Liang Chu & Yi-fan Jia & Dong-sheng Chen & Nan Xu & Yan-wei Wang & Xin Tang & Zhe Xu, 2017. "Research on Control Strategies of an Open-End Winding Permanent Magnet Synchronous Driving Motor (OW-PMSM)-Equipped Dual Inverter with a Switchable Winding Mode for Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-22, May.
    10. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "High Frequency Dual-Buck Full-Bridge Inverter Utilizing a Dual-Core MCU and Parallel Algorithm for Renewable Energy Applications," Energies, MDPI, vol. 10(3), pages 1-18, March.
    11. Boe-Shong Hong & Mei-Hung Wu, 2015. "Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L 2 -Gain Control," Energies, MDPI, vol. 8(9), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:2:p:96-:d:63445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.