IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p9992-10016d55771.html
   My bibliography  Save this article

Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L 2 -Gain Control

Author

Listed:
  • Boe-Shong Hong

    (Department of Mechanical Engineering, National Chung Cheng University, No.168, University Rd., Min-Hsiung, Chia-Yi 62102, Taiwan)

  • Mei-Hung Wu

    (Department of Mechanical Engineering, National Chung Cheng University, No.168, University Rd., Min-Hsiung, Chia-Yi 62102, Taiwan)

Abstract

This work aims at online regulating transient current out of the batteries of small-sized electric cars that transport people and goods around cities. In a city with heavy traffic, transient current dominates the energy economy and propulsion capability, which are in opposition to each other. In order to manage the trade-off between energy consumption per distance and propulsion capability in transience, the authors improve on previous work on multi-objective linear parameter-varying (LPV) L 2 -gain control. The observer embedded into this multi-objective controller no longer assumes Kalman-filtering structure, and structural conservatism is thus removed. A full-spectrum set of experiments is performed. The results reveal that the feedback design significantly improves energy-motion management.

Suggested Citation

  • Boe-Shong Hong & Mei-Hung Wu, 2015. "Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L 2 -Gain Control," Energies, MDPI, vol. 8(9), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9992-10016:d:55771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/9992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/9992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Kordonis & Ryo Takahashi & Daichi Nishihara & Takashi Hikihara, 2015. "The Three-Phase Power Router and Its Operation with Matrix Converter toward Smart-Grid Applications," Energies, MDPI, vol. 8(4), pages 1-13, April.
    2. Yu Zhang & Minying Li & Yong Kang, 2014. "PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling," Energies, MDPI, vol. 7(12), pages 1-20, November.
    3. Jaewook Lee & Woosuk Sung & Joo-Ho Choi, 2015. "Metamodel for Efficient Estimation of Capacity-Fade Uncertainty in Li-Ion Batteries for Electric Vehicles," Energies, MDPI, vol. 8(6), pages 1-17, June.
    4. Matthias Rogge & Sebastian Wollny & Dirk Uwe Sauer, 2015. "Fast Charging Battery Buses for the Electrification of Urban Public Transport—A Feasibility Study Focusing on Charging Infrastructure and Energy Storage Requirements," Energies, MDPI, vol. 8(5), pages 1-20, May.
    5. Yin Hua & Min Xu & Mian Li & Chengbin Ma & Chen Zhao, 2015. "Estimation of State of Charge for Two Types of Lithium-Ion Batteries by Nonlinear Predictive Filter for Electric Vehicles," Energies, MDPI, vol. 8(5), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    2. Yunfeng Jiang & Xin Zhao & Amir Valibeygi & Raymond A. De Callafon, 2016. "Dynamic Prediction of Power Storage and Delivery by Data-Based Fractional Differential Models of a Lithium Iron Phosphate Battery," Energies, MDPI, vol. 9(8), pages 1-17, July.
    3. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    4. Piotr Hołyszko & Dariusz Zieliński & Andrzej Niewczas & Joanna Rymarz & Ewa Dębicka, 2021. "Ensuring the Continuity of Power Supply to the On-Board Auxiliary Devices of the Trolleybus through the Recuperation of Kinetic Energy," Energies, MDPI, vol. 14(16), pages 1-18, August.
    5. Christoph Streuling & Johannes Pagenkopf & Moritz Schenker & Kim Lakeit, 2021. "Techno-Economic Assessment of Battery Electric Trains and Recharging Infrastructure Alternatives Integrating Adjacent Renewable Energy Sources," Sustainability, MDPI, vol. 13(15), pages 1-30, July.
    6. He, Yi & Liu, Zhaocai & Song, Ziqi, 2020. "Optimal charging scheduling and management for a fast-charging battery electric bus system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    7. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    8. Wenz, Klaus-Peter & Serrano-Guerrero, Xavier & Barragán-Escandón, Antonio & González, L.G. & Clairand, Jean-Michel, 2021. "Route prioritization of urban public transportation from conventional to electric buses: A new methodology and a study of case in an intermediate city of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    10. Mohammed Al-Saadi & Sharmistha Bhattacharyya & Pierre Van Tichelen & Manuel Mathes & Johannes Käsgen & Joeri Van Mierlo & Maitane Berecibar, 2022. "Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet," Energies, MDPI, vol. 15(4), pages 1-16, February.
    11. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    12. Purnell, K. & Bruce, A.G. & MacGill, I., 2022. "Impacts of electrifying public transit on the electricity grid, from regional to state level analysis," Applied Energy, Elsevier, vol. 307(C).
    13. Sistig, Hubert Maximilian & Sauer, Dirk Uwe, 2023. "Metaheuristic for the integrated electric vehicle and crew scheduling problem," Applied Energy, Elsevier, vol. 339(C).
    14. Marcin Połom & Paweł Wiśniewski, 2021. "Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    15. Wu, Xiaomei & Feng, Qijin & Bai, Chenchen & Lai, Chun Sing & Jia, Youwei & Lai, Loi Lei, 2021. "A novel fast-charging stations locational planning model for electric bus transit system," Energy, Elsevier, vol. 224(C).
    16. Yang Yang & Mohamed El Baghdadi & Yuanfeng Lan & Yassine Benomar & Joeri Van Mierlo & Omar Hegazy, 2018. "Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    17. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    18. Gang Yao & Tao Zhang & Lidan Zhou & Qiang Li & Nan Jin, 2019. "An Alterable Structure Power Router with General AC and DC Port for Microgrid Applications," Energies, MDPI, vol. 12(9), pages 1-19, May.
    19. Bálint Csonka, 2021. "Optimization of Static and Dynamic Charging Infrastructure for Electric Buses," Energies, MDPI, vol. 14(12), pages 1-18, June.
    20. Varga, Balázs & Tettamanti, Tamás & Kulcsár, Balázs, 2019. "Energy-aware predictive control for electrified bus networks," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9992-10016:d:55771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.