IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5203-d865654.html
   My bibliography  Save this article

Online Failure Diagnostic in Full-Bridge Module for Optimum Setup of an IGBT-Based Multilevel Inverter

Author

Listed:
  • Juan Carlos Iglesias-Rojas

    (Instituto Politécnico Nacional—ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico)

  • Erick Velázquez-Lozada

    (Instituto Politécnico Nacional—ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico)

  • Roberto Baca-Arroyo

    (Instituto Politécnico Nacional—ESIME Zacatenco, Unidad Profesional Adolfo López Mateos, Alcaldía Gustavo A. Madero, Mexico City 07738, Mexico)

Abstract

An online failure diagnostic test is essential to ensure the robustness and reliability of high-powered systems. Furthermore, the overall design must comprise diagnostic strategies to detect in-service and high-powered module defects. This paper describes the critical failure mechanisms––cross-conduction, inductive avalanche, second turn-on, VS-undershoot, inrush current, and thermal runaway––that directly affect insulated gate bipolar transistor (IGBT) operation. The constructed inverter contains 18 transformer-based taps (six per phase); however, this work studied a single tap (IGBT-based full-bridge module) to understand the reasons for failure and the routes to mitigate them. Moreover, a cost-effective solution using the IR2127STRPBF driver circuit was implemented to reduce the probability of thermal runaway in case of overcurrent, short-circuit, or avalanche events. For this reason, the electrical current state was adjusted using an FPGA digital resource to perform dynamic PWM control signals. The obtained correlation waveforms are valuable for verifying diagnostic data at the design stage to emphasize the significance of evading premature failure events. The comprehensive study on failure diagnosis enabled successful design strategies to construct a robust 45 kVA three-phase multilevel inverter for a 22 kW eolic-photovoltaic generation plant.

Suggested Citation

  • Juan Carlos Iglesias-Rojas & Erick Velázquez-Lozada & Roberto Baca-Arroyo, 2022. "Online Failure Diagnostic in Full-Bridge Module for Optimum Setup of an IGBT-Based Multilevel Inverter," Energies, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5203-:d:865654
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marija Vujacic & Manel Hammami & Milan Srndovic & Gabriele Grandi, 2018. "Analysis of dc-Link Voltage Switching Ripple in Three-Phase PWM Inverters," Energies, MDPI, vol. 11(2), pages 1-14, February.
    2. Syed Sabir Hussain Bukhari & Shahid Atiq & Byung-il Kwon, 2016. "Elimination of the Inrush Current Phenomenon Associated with Single-Phase Offline UPS Systems," Energies, MDPI, vol. 9(2), pages 1-16, February.
    3. Shan Yin & Yingzhe Wu & Yitao Liu & Xuewei Pan, 2019. "Comparative Design of Gate Drivers with Short-Circuit Protection Scheme for SiC MOSFET and Si IGBT," Energies, MDPI, vol. 12(23), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Li & Lei Yang & Tao Wang, 2022. "Analysis of the DC-Link Voltage Ripple for the Three-Phase Voltage Source Converter under Nonlinear Output Current," Energies, MDPI, vol. 15(8), pages 1-15, April.
    2. Manel Hammami & Riccardo Mandrioli & Aleksandr Viatkin & Mattia Ricco & Gabriele Grandi, 2020. "Analysis of Input Voltage Switching Ripple in Three-Phase Four-Wire Split Capacitor PWM Inverters," Energies, MDPI, vol. 13(19), pages 1-21, September.
    3. Héctor Sarnago & Óscar Lucía & Iulian O. Popa & José M. Burdío, 2021. "Constant-Current Gate Driver for GaN HEMTs Applied to Resonant Power Conversion," Energies, MDPI, vol. 14(9), pages 1-10, April.
    4. Riccardo Mandrioli & Aleksandr Viatkin & Manel Hammami & Mattia Ricco & Gabriele Grandi, 2021. "Prediction of DC-Link Voltage Switching Ripple in Three-Phase Four-Leg PWM Inverters," Energies, MDPI, vol. 14(5), pages 1-26, March.
    5. P. Sathishkumar & T. N. V. Krishna & Himanshu & Muhammad Adil Khan & Kamran Zeb & Hee-Je Kim, 2018. "Digital Soft Start Implementation for Minimizing Start Up Transients in High Power DAB-IBDC Converter," Energies, MDPI, vol. 11(4), pages 1-18, April.
    6. Weixuan Zhang & Yu Fang & Rong Ye & Zhengqun Wang, 2020. "Analysis and Design of a Double Fuzzy PI Controller of a Voltage Outer Loop in a Reversible Three-Phase PWM Converter," Energies, MDPI, vol. 13(15), pages 1-19, July.
    7. Loreine Makki & Marc Anthony Mannah & Christophe Batard & Nicolas Ginot & Julien Weckbrodt, 2021. "Investigating the Shielding Effect of Pulse Transformer Operation in Isolated Gate Drivers for SiC MOSFETs," Energies, MDPI, vol. 14(13), pages 1-16, June.
    8. Syed Sabir Hussain Bukhari & Shahid Atiq & Thomas A. Lipo & Byung-il Kwon, 2016. "Asymmetrical Fault Correction for the Sensitive Loads Using a Current Regulated Voltage Source Inverter," Energies, MDPI, vol. 9(3), pages 1-14, March.
    9. Osama Majeed Butt & Tallal Majeed Butt & Muhammad Husnain Ashfaq & Muhammad Talha & Siti Rohani Sheikh Raihan & Muhammad Majid Hussain, 2022. "Simulative Study to Reduce DC-Link Capacitor of Drive Train for Electric Vehicles," Energies, MDPI, vol. 15(12), pages 1-31, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5203-:d:865654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.