IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2674-d174231.html
   My bibliography  Save this article

Frequency-Adaptive Current Controller Design Based on LQR State Feedback Control for a Grid-Connected Inverter under Distorted Grid

Author

Listed:
  • Rizka Bimarta

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

  • Thuy Vi Tran

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

  • Kyeong-Hwa Kim

    (Department of Electrical and Information Engineering, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea)

Abstract

This paper proposes a frequency-adaptive current control design for a grid-connected inverter with an inductive–capacitive–inductive (LCL) filter to overcome the issues relating to both the harmonic distortion and frequency variation in the grid voltage. The current control scheme consists of full-state feedback control to stabilize the system and integral control terms to track the reference in the presence of disturbance and uncertainty. In addition, the current controller is augmented with resonant control terms to mitigate the harmonic component. The control scheme is implemented in the synchronous reference frame (SRF) to effectively compensate two harmonic orders at the same time by using only one resonant term. Moreover, to tackle the frequency variation issue in grid voltage, the frequency information which is extracted from the phase-locked loop (PLL) block is processed by a moving average filter (MAF) for the purpose of eliminating the frequency fluctuation caused by the harmonically distorted grid voltage. The filtered frequency information is employed to synthesize the resonant controller, even in the environment of frequency variation. To implement full-state feedback control for a grid-connected inverter with an LCL filter, all the state variables should be available. However, the increase in number of sensing devices leads to the rise of cost and complexity for hardware implementation. To overcome this challenge, a discrete-time full-state current observer is introduced to estimate all the system states. When the grid frequency is subject to variation, the discrete-time implementation of the observer in the SRF requires an online discretization process because the system matrix in the SRF includes frequency information. This results in a heavy computational burden for the controller. To resolve such a difficulty, a discrete-time observer in the stationary reference frame is employed in the proposed scheme. In the stationary frame, the discretization of the system model can be accomplished with a simple offline method even in the presence of frequency variation since the system matrix does not include the frequency. To select desirable gains for the full-state feedback controller and full-state observer, an optimal linear quadratic control approach is applied. To validate the practical effectiveness of the proposed frequency-adaptive control, simulation and experimental results are presented.

Suggested Citation

  • Rizka Bimarta & Thuy Vi Tran & Kyeong-Hwa Kim, 2018. "Frequency-Adaptive Current Controller Design Based on LQR State Feedback Control for a Grid-Connected Inverter under Distorted Grid," Energies, MDPI, vol. 11(10), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2674-:d:174231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    2. Thuy Vi Tran & Seung-Jin Yoon & Kyeong-Hwa Kim, 2018. "An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment," Energies, MDPI, vol. 11(8), pages 1-28, August.
    3. Seung-Jin Yoon & Ngoc Bao Lai & Kyeong-Hwa Kim, 2018. "A Systematic Controller Design for a Grid-Connected Inverter with LCL Filter Using a Discrete-Time Integral State Feedback Control and State Observer," Energies, MDPI, vol. 11(2), pages 1-20, February.
    4. Xiaobo Dou & Kang Yang & Xiangjun Quan & Qinran Hu & Zaijun Wu & Bo Zhao & Peng Li & Shizhan Zhang & Yang Jiao, 2015. "An Optimal PR Control Strategy with Load Current Observer for a Three-Phase Voltage Source Inverter," Energies, MDPI, vol. 8(8), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thuy Vi Tran & Myungbok Kim & Kyeong-Hwa Kim, 2019. "Frequency Adaptive Current Control Scheme for Grid-connected Inverter without Grid Voltage Sensors Based on Gradient Steepest Descent Method," Energies, MDPI, vol. 12(22), pages 1-27, November.
    2. Javier Serrano & Javier Moriano & Mario Rizo & Francisco Javier Dongil, 2019. "Enhanced Current Reference Calculation to Avoid Harmonic Active Power Oscillations," Energies, MDPI, vol. 12(21), pages 1-21, October.
    3. Rafal Szczepanski & Marcin Kaminski & Tomasz Tarczewski, 2020. "Auto-Tuning Process of State Feedback Speed Controller Applied for Two-Mass System," Energies, MDPI, vol. 13(12), pages 1-16, June.
    4. Al Faris Habibullah & Seung-Jin Yoon & Thuy Vi Tran & Yubin Kim & Dat Thanh Tran & Kyeong-Hwa Kim, 2022. "The Recent Development of Power Electronics and AC Machine Drive Systems," Energies, MDPI, vol. 15(21), pages 1-8, October.
    5. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min Huang & Han Li & Weimin Wu & Frede Blaabjerg, 2019. "Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs," Energies, MDPI, vol. 12(8), pages 1-15, April.
    2. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    3. Thuy Vi Tran & Myungbok Kim & Kyeong-Hwa Kim, 2019. "Frequency Adaptive Current Control Scheme for Grid-connected Inverter without Grid Voltage Sensors Based on Gradient Steepest Descent Method," Energies, MDPI, vol. 12(22), pages 1-27, November.
    4. Dante Mora & Ciro Núñez & Nancy Visairo & Juan Segundo & Eugenio Camargo, 2019. "Control for Three-Phase LCL-Filter PWM Rectifier with BESS-Oriented Application," Energies, MDPI, vol. 12(21), pages 1-17, October.
    5. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    6. Botong Li & Jianfei Jia & Shimin Xue, 2016. "Study on the Current-Limiting-Capable Control Strategy for Grid-Connected Three-Phase Four-Leg Inverter in Low-Voltage Network," Energies, MDPI, vol. 9(9), pages 1-18, September.
    7. Junhui Li & Tianyang Zhang & Lei Qi & Gangui Yan, 2017. "A Method for the Realization of an Interruption Generator Based on Voltage Source Converters," Energies, MDPI, vol. 10(10), pages 1-19, October.
    8. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    9. Boris Dumnic & Bane Popadic & Dragan Milicevic & Nikola Vukajlovic & Marko Delimar, 2019. "Control Strategy for a Grid Connected Converter in Active Unbalanced Distribution Systems," Energies, MDPI, vol. 12(7), pages 1-18, April.
    10. Bo Pang & Heng Nian, 2019. "Improved Operation Strategy with Alternative Control Targets for Voltage Source Converter under Harmonically Distorted Grid Considering Inter-Harmonics," Energies, MDPI, vol. 12(7), pages 1-14, March.
    11. Yuxia Jiang & Yonggang Li & Yanjun Tian & Luo Wang, 2018. "Phase-Locked Loop Research of Grid-Connected Inverter Based on Impedance Analysis," Energies, MDPI, vol. 11(11), pages 1-21, November.
    12. Thuy Vi Tran & Seung-Jin Yoon & Kyeong-Hwa Kim, 2018. "An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment," Energies, MDPI, vol. 11(8), pages 1-28, August.
    13. Thanh Van Nguyen & Kyeong-Hwa Kim, 2019. "An Improved Power Management Strategy for MAS-Based Distributed Control of DC Microgrid under Communication Network Problems," Sustainability, MDPI, vol. 12(1), pages 1-27, December.
    14. Raymundo Cordero & Thyago Estrabis & Gabriel Gentil & Matheus Caramalac & Walter Suemitsu & João Onofre & Moacyr Brito & Juliano dos Santos, 2022. "Tracking and Rejection of Biased Sinusoidal Signals Using Generalized Predictive Controller," Energies, MDPI, vol. 15(15), pages 1-13, August.
    15. Zahra Malekjamshidi & Mohammad Jafari & Jianguo Zhu & Marco Rivera & Wen Soong, 2021. "Model Predictive Control of the Input Current and Output Voltage of a Matrix Converter as a Ground Power Unit for Airplane Servicing," Sustainability, MDPI, vol. 13(17), pages 1-17, August.
    16. Norbert Klaes & Florian Pöschke & Horst Schulte, 2021. "Grid Forming Stator Flux Control of Doubly-Fed Induction Generator," Energies, MDPI, vol. 14(20), pages 1-12, October.
    17. Norbert Klaes & Nico Goldschmidt & Jens Fortmann, 2020. "Voltage Fed Control of Distributed Power Generation Inverters with Inherent Service to Grid Stability," Energies, MDPI, vol. 13(10), pages 1-15, May.
    18. Syed Sabir Hussain Bukhari & Shahid Atiq & Byung-il Kwon, 2016. "Elimination of the Inrush Current Phenomenon Associated with Single-Phase Offline UPS Systems," Energies, MDPI, vol. 9(2), pages 1-16, February.
    19. Xiaotao Chen & Weimin Wu & Ning Gao & Jiahao Liu & Henry Shu-Hung Chung & Frede Blaabjerg, 2019. "Finite Control Set Model Predictive Control for an LCL-Filtered Grid-Tied Inverter with Full Status Estimations under Unbalanced Grid Voltage," Energies, MDPI, vol. 12(14), pages 1-22, July.
    20. Teuvo Suntio & Tuomas Messo, 2019. "Power Electronics in Renewable Energy Systems," Energies, MDPI, vol. 12(10), pages 1-5, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2674-:d:174231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.