IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i12p8036-8055d42918.html
   My bibliography  Save this article

PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling

Author

Listed:
  • Yu Zhang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China)

  • Minying Li

    (Guangdong Zhicheng Champion Co., Dongguan 523718, Guangdong, China)

  • Yong Kang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, Hubei, China)

Abstract

In three-phase inverters used in uninterruptible power supplies (UPSs), three-limb inductors and three-limb transformers are commonly used in consideration of cost and size. However, magnetic coupling exists between the three phases of the inverter, which can result in complex models. When instantaneous feedback control strategies are introduced to achieve high quality output waveforms, the transient analysis of the closed-loop inverters becomes difficult. In this paper, the phenomenon of magnetic coupling in three-phase inverters due to three-limb inductors and three-limb transformers is analyzed. A decoupled dynamic model is derived based on the instantaneous symmetrical components transformation, which comprises three decoupled equivalent circuits of instantaneous symmetrical components. Analyses based on this model indicate that magnetic coupling may have a significant impact on the performance of three-phase inverters under unbalanced load conditions and transient responses. For three-phase inverters in UPSs with Proportional-Integral-Differential (PID) closed-loop control strategies, the interactive influence between instantaneous closed-loop regulation and magnetic coupling is researched. Finally, a method of reliability analysis and PID controller design for inverters with magnetic coupling is derived. Simulation and experiment results validate the model and conclusions.

Suggested Citation

  • Yu Zhang & Minying Li & Yong Kang, 2014. "PID Controller Design for UPS Three-Phase Inverters Considering Magnetic Coupling," Energies, MDPI, vol. 7(12), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8036-8055:d:42918
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/12/8036/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/12/8036/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Syed Sabir Hussain Bukhari & Shahid Atiq & Byung-il Kwon, 2016. "Elimination of the Inrush Current Phenomenon Associated with Single-Phase Offline UPS Systems," Energies, MDPI, vol. 9(2), pages 1-16, February.
    2. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    3. Boe-Shong Hong & Mei-Hung Wu, 2015. "Online Energy Management of City Cars with Multi-Objective Linear Parameter-Varying L 2 -Gain Control," Energies, MDPI, vol. 8(9), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8036-8055:d:42918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.