IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1922-d119830.html
   My bibliography  Save this article

Analysis of the Potential of Low-Temperature Heat Pump Energy Sources

Author

Listed:
  • Pavel Neuberger

    (Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague-Suchdol, Czech Republic)

  • Radomír Adamovský

    (Department of Mechanical Engineering, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague-Suchdol, Czech Republic)

Abstract

The paper deals with an analysis of temperatures of ground masses in the proximities of linear and slinky-type HGHE (horizontal ground heat exchanger). It evaluates and compares the potentials of HGHEs and ambient air. The reason and aim of the verification was to gain knowledge of the temperature course of the monitored low-temperature heat pump energy sources during heating periods and periods of stagnation and to analyse the knowledge in terms of the potential to use those sources for heat pumps. The study was conducted in the years 2012–2015 during three heating periods and three periods of HGHEs stagnation. The results revealed that linear HGHE had the highest temperature potential of the observed low-temperature heat pump energy sources. The average daily temperatures of the ground mass surrounding the linear HGHE were the highest ranging from 7.08 °C to 9.20 °C during the heating periods, and having the lowest temperature variation range of 12.62–15.14 K, the relative frequency of the average daily temperatures of the ground mass being the highest at 22.64% in the temperature range containing the mode of all monitored temperatures in a recorded interval of [4.10, 6.00] °C. Ambient air had lower temperature potential than the monitored HGHEs.

Suggested Citation

  • Pavel Neuberger & Radomír Adamovský, 2017. "Analysis of the Potential of Low-Temperature Heat Pump Energy Sources," Energies, MDPI, vol. 10(11), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1922-:d:119830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pavel Neuberger & Radomír Adamovský & Michaela Šeďová, 2014. "Temperatures and Heat Flows in a Soil Enclosing a Slinky Horizontal Heat Exchanger," Energies, MDPI, vol. 7(2), pages 1-16, February.
    2. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    3. Cristina Sáez Blázquez & Arturo Farfán Martín & Ignacio Martín Nieto & Diego Gonzalez-Aguilera, 2017. "Measuring of Thermal Conductivities of Soils and Rocks to Be Used in the Calculation of A Geothermal Installation," Energies, MDPI, vol. 10(6), pages 1-19, June.
    4. Garcia Gonzalez, Raquel & Verhoef, Anne & Vidale, Pier Luigi & Main, Bruce & Gan, Guogui & Wu, Yupeng, 2012. "Interactions between the physical soil environment and a horizontal ground coupled heat pump, for a domestic site in the UK," Renewable Energy, Elsevier, vol. 44(C), pages 141-153.
    5. Yu Jin Nam & Xin Yang Gao & Sung Hoon Yoon & Kwang Ho Lee, 2015. "Study on the Performance of a Ground Source Heat Pump System Assisted by Solar Thermal Storage," Energies, MDPI, vol. 8(12), pages 1-17, November.
    6. Pavel Pauli & Pavel Neuberger & Radomír Adamovský, 2016. "Monitoring and Analysing Changes in Temperature and Energy in the Ground with Installed Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 9(8), pages 1-13, July.
    7. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    8. Wu, Wei & Wang, Baolong & You, Tian & Shi, Wenxing & Li, Xianting, 2013. "A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump," Renewable Energy, Elsevier, vol. 59(C), pages 39-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavel Neuberger & Radomír Adamovský, 2019. "Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps," Energies, MDPI, vol. 12(10), pages 1-14, May.
    2. Barbara Larwa, 2018. "Heat Transfer Model to Predict Temperature Distribution in the Ground," Energies, MDPI, vol. 12(1), pages 1-16, December.
    3. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    4. Krzysztof Neupauer & Sebastian Pater & Krzysztof Kupiec, 2018. "Study of Ground Heat Exchangers in the Form of Parallel Horizontal Pipes Embedded in the Ground," Energies, MDPI, vol. 11(3), pages 1-16, February.
    5. Monika Gwadera & Krzysztof Kupiec, 2021. "Modeling the Temperature Field in the Ground with an Installed Slinky-Coil Heat Exchanger," Energies, MDPI, vol. 14(13), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pavel Pauli & Pavel Neuberger & Radomír Adamovský, 2016. "Monitoring and Analysing Changes in Temperature and Energy in the Ground with Installed Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 9(8), pages 1-13, July.
    2. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    3. Krzysztof Neupauer & Sebastian Pater & Krzysztof Kupiec, 2018. "Study of Ground Heat Exchangers in the Form of Parallel Horizontal Pipes Embedded in the Ground," Energies, MDPI, vol. 11(3), pages 1-16, February.
    4. Lili Tan & James A. Love, 2013. "A Literature Review on Heating of Ventilation Air with Large Diameter Earth Tubes in Cold Climates," Energies, MDPI, vol. 6(8), pages 1-10, July.
    5. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    6. Pavel Neuberger & Radomír Adamovský, 2019. "Analysis and Comparison of Some Low-Temperature Heat Sources for Heat Pumps," Energies, MDPI, vol. 12(10), pages 1-14, May.
    7. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2018. "Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems," Energy, Elsevier, vol. 151(C), pages 556-568.
    8. Bryś, Krystyna & Bryś, Tadeusz & Sayegh, Marderos Ara & Ojrzyńska, Hanna, 2020. "Characteristics of heat fluxes in subsurface shallow depth soil layer as a renewable thermal source for ground coupled heat pumps," Renewable Energy, Elsevier, vol. 146(C), pages 1846-1866.
    9. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    10. Zilong Deng & Xiangdong Liu & Yongping Huang & Chengbin Zhang & Yongping Chen, 2017. "Heat Conduction in Porous Media Characterized by Fractal Geometry," Energies, MDPI, vol. 10(8), pages 1-14, August.
    11. Naylor, Shawn & Ellett, Kevin M. & Gustin, Andrew R., 2015. "Spatiotemporal variability of ground thermal properties in glacial sediments and implications for horizontal ground heat exchanger design," Renewable Energy, Elsevier, vol. 81(C), pages 21-30.
    12. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    13. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    14. Luo, Jin & Qiao, Yu & Xiang, Wei & Rohn, Joachim, 2020. "Measurements and analysis of the thermal properties of a sedimentary succession in Yangtze plate in China," Renewable Energy, Elsevier, vol. 147(P2), pages 2708-2723.
    15. Zhou, Chaohui & Ni, Long & Li, Jun & Lin, Zeri & Wang, Jun & Fu, Xuhui & Yao, Yang, 2019. "Air-source heat pump heating system with a new temperature and hydraulic-balance control strategy: A field experiment in a teaching building," Renewable Energy, Elsevier, vol. 141(C), pages 148-161.
    16. Guo, Min & Diao, Nairen & Man, Yi & Fang, Zhaohong, 2016. "Research and development of the hybrid ground-coupled heat pump technology in China," Renewable Energy, Elsevier, vol. 87(P3), pages 1033-1044.
    17. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    18. Garcia Gonzalez, Raquel & Verhoef, Anne & Vidale, Pier Luigi & Main, Bruce & Gan, Guogui & Wu, Yupeng, 2012. "Interactions between the physical soil environment and a horizontal ground coupled heat pump, for a domestic site in the UK," Renewable Energy, Elsevier, vol. 44(C), pages 141-153.
    19. Yurim Kim & Jonghun Lim & Jae Yun Shim & Seokil Hong & Heedong Lee & Hyungtae Cho, 2022. "Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System," Energies, MDPI, vol. 15(9), pages 1-16, April.
    20. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1922-:d:119830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.