IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p799-d79810.html
   My bibliography  Save this article

Design and Optimization of an Efficient (96.1%) and Compact (2 kW/dm3) Bidirectional Isolated Single-Phase Dual Active Bridge AC-DC Converter

Author

Listed:
  • Jordi Everts

    (Department of Electrical Engineering, Electromechanics and Power Electronics (EPE) Group, Eindhoven University of Technology (TU/e), Postbox 513, 5600 MB Eindhoven, The Netherlands)

Abstract

The growing attention on plug-in electric vehicles, and the associated high-performance demands, have initiated a development trend towards highly efficient and compact on-board battery chargers. These isolated ac-dc converters are most commonly realized using two conversion stages, combining a non-isolated power factor correction (PFC) rectifier with an isolated dc-dc converter.This, however, involves two loss stages and a relatively high component count, limiting the achievable efficiency and power density and resulting in high costs. In this paper, a single-stage converter approach is analyzed to realize a single-phase ac-dc converter, combining all functionalities into one conversion stage and thus enabling a cost-effective efficiency and power density increase. The converter topology consists of a quasi-lossless synchronous rectifier followed by an isolated dual active bridge (DAB) dc-dc converter, putting a small filter capacitor in between. To show the performance potential of this bidirectional, isolated ac-dc converter, a comprehensive design procedure and multi-objective optimization with respect to efficiency and power density is presented, using detailed loss and volume models. The models and procedures are verified by a 3.7kW hardware demonstrator, interfacing a 400Vdc-bus with the single-phase 230V,50Hz utility grid. Measurement results indicate a state-of-the-art efficiency of 96.1% and power density of 2 kW/dm3, confirming the competitiveness of the investigated single-stage DAB ac-dc converter.

Suggested Citation

  • Jordi Everts, 2016. "Design and Optimization of an Efficient (96.1%) and Compact (2 kW/dm3) Bidirectional Isolated Single-Phase Dual Active Bridge AC-DC Converter," Energies, MDPI, vol. 9(10), pages 1-40, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:799-:d:79810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying Fan & Weixia Zhu & Zhongbing Xue & Li Zhang & Zhixiang Zou, 2015. "A Multi-Function Conversion Technique for Vehicle-to-Grid Applications," Energies, MDPI, vol. 8(8), pages 1-16, July.
    2. Aiswariya Sekar & Dhanasekaran Raghavan, 2015. "Implementation of Single Phase Soft Switched PFC Converter for Plug-in-Hybrid Electric Vehicles," Energies, MDPI, vol. 8(11), pages 1-16, November.
    3. Yen-Ching Wang & Fu-Ming Ni & Tzung-Lin Lee, 2016. "Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-13, June.
    4. Song Hu & Xiaodong Li & Ming Lu & Bo-Yue Luan, 2015. "Operation Modes of a Secondary-Side Phase-Shifted Resonant Converter," Energies, MDPI, vol. 8(11), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuan Sun & Xiaodong Li, 2018. "Fast Transient Modulation for a Step Load Change in a Dual-Active-Bridge Converter with Extended-Phase-Shift Control," Energies, MDPI, vol. 11(6), pages 1-22, June.
    2. Piotr Dworakowski & Andrzej Wilk & Michal Michna & Bruno Lefebvre & Fabien Sixdenier & Michel Mermet-Guyennet, 2020. "Effective Permeability of Multi Air Gap Ferrite Core 3-Phase Medium Frequency Transformer in Isolated DC-DC Converters," Energies, MDPI, vol. 13(6), pages 1-21, March.
    3. Dante Ruiz-Robles & Vicente Venegas-Rebollar & Adolfo Anaya-Ruiz & Edgar L. Moreno-Goytia & Juan R. Rodríguez-Rodríguez, 2018. "Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC–DC Converters," Energies, MDPI, vol. 11(8), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhao & Chuangyu Xu & Xuemei Zheng & Haoyu Li, 2017. "A Dual Half-Bridge Converter with Adaptive Energy Storage to Achieve ZVS over Full Range of Operation Conditions," Energies, MDPI, vol. 10(4), pages 1-10, March.
    2. Wenzheng Xu & Nelson Hon Lung Chan & Siu Wing Or & Siu Lau Ho & Ka Wing Chan, 2017. "A New Control Method for a Bi-Directional Phase-Shift-Controlled DC-DC Converter with an Extended Load Range," Energies, MDPI, vol. 10(10), pages 1-17, October.
    3. Chuan Sun & Xiaodong Li, 2018. "Fast Transient Modulation for a Step Load Change in a Dual-Active-Bridge Converter with Extended-Phase-Shift Control," Energies, MDPI, vol. 11(6), pages 1-22, June.
    4. Khairy Sayed & Hossam A. Gabbar, 2016. "Electric Vehicle to Power Grid Integration Using Three-Phase Three-Level AC/DC Converter and PI-Fuzzy Controller," Energies, MDPI, vol. 9(7), pages 1-16, July.
    5. Sergio Ignacio Serna-Garcés & Daniel Gonzalez Montoya & Carlos Andres Ramos-Paja, 2016. "Sliding-Mode Control of a Charger/Discharger DC/DC Converter for DC-Bus Regulation in Renewable Power Systems," Energies, MDPI, vol. 9(4), pages 1-27, March.
    6. Jiatu Hong & Mahinda Vilathgamuwa & Jian Yin & Yitao Liu & Jianchun Peng & Hui Jiang, 2018. "Power Decoupling of a Single Phase DC-AC Dual Active Bridge Converter Based on an Integrated Bidirectional Buck/Boost Stage," Energies, MDPI, vol. 11(10), pages 1-16, October.
    7. Bishnu P. Bhattarai & Kurt S. Myers & Birgitte Bak-Jensen & Sumit Paudyal, 2017. "Multi-Time Scale Control of Demand Flexibility in Smart Distribution Networks," Energies, MDPI, vol. 10(1), pages 1-18, January.
    8. Khairy Sayed & Ahmed G. Abo-Khalil & Ali S. Alghamdi, 2019. "Optimum Resilient Operation and Control DC Microgrid Based Electric Vehicles Charging Station Powered by Renewable Energy Sources," Energies, MDPI, vol. 12(22), pages 1-23, November.
    9. Amruta V. Kulkarni & Weiqiang Chen & Ali M. Bazzi, 2016. "Implementation of Rapid Prototyping Tools for Power Loss and Cost Minimization of DC-DC Converters," Energies, MDPI, vol. 9(7), pages 1-35, July.
    10. Phap Vu Minh & Sang Le Quang & Manh-Hai Pham, 2021. "Technical Economic Analysis of Photovoltaic-Powered Electric Vehicle Charging Stations under Different Solar Irradiation Conditions in Vietnam," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    11. Pedro J. Villegas & Juan A. Martín-Ramos & Juan Díaz & Juan Á. Martínez & Miguel J. Prieto & Alberto M. Pernía, 2017. "A Digitally Controlled Power Converter for an Electrostatic Precipitator," Energies, MDPI, vol. 10(12), pages 1-24, December.
    12. Dante Ruiz-Robles & Vicente Venegas-Rebollar & Adolfo Anaya-Ruiz & Edgar L. Moreno-Goytia & Juan R. Rodríguez-Rodríguez, 2018. "Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC–DC Converters," Energies, MDPI, vol. 11(8), pages 1-17, August.
    13. Yifeng Wang & Liang Yang & Fuqiang Han & Shijie Tu & Weiya Zhang, 2017. "A Study of Two Multi-Element Resonant DC-DC Topologies with Loss Distribution Analyses," Energies, MDPI, vol. 10(9), pages 1-18, September.
    14. Ahmed H. Okilly & Namhun Kim & Jeihoon Baek, 2020. "Inrush Current Control of High Power Density DC–DC Converter," Energies, MDPI, vol. 13(17), pages 1-24, August.
    15. Younghoon Cho & Byeng-Joo Byen & Han-Sol Lee & Kwan-Yuhl Cho, 2017. "A Single-Loop Repetitive Voltage Controller with an Active Damping Control Technique," Energies, MDPI, vol. 10(5), pages 1-13, May.
    16. Oswaldo Lopez-Santos & Alejandro J. Cabeza-Cabeza & Germain Garcia & Luis Martinez-Salamero, 2019. "Sliding Mode Control of the Isolated Bridgeless SEPIC High Power Factor Rectifier Interfacing an AC Source with a LVDC Distribution Bus," Energies, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:799-:d:79810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.