IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p777-d78977.html
   My bibliography  Save this article

Pellet as a Technological Nutrient within the Circular Economy Model: Comparative Analysis of Combustion Efficiency and CO and NO x Emissions for Pellets from Olive and Almond Trees

Author

Listed:
  • Valentín Molina-Moreno

    (Department of Management, University of Granada, 18071 Granada, Spain)

  • Juan Carlos Leyva-Díaz

    (Department of Civil Engineering, University of Granada, 18071 Granada, Spain)

  • Jorge Sánchez-Molina

    (Department of Chemistry, University of Francisco de Paula Santander, 540003 San José de Cúcuta, Colombia)

Abstract

This study analyzes the operation of Biomass System (BIO System) technology for the combustion of pellets from almond and olive trees within the circular economy model. Its aims are the reduction of greenhouse gas emissions as well as waste removal and its energy use by reintroducing that waste into the production process as technological nutrient. In order to do so, combustion efficiency under optimal conditions at nominal power was analyzed. In addition, a TESTO 350-XL analyzer was employed to measure CO and NO x emissions. High combustion efficiency values were obtained, 87.7% and 86.3%, for pellets from olive tree and almond tree, respectively. The results of CO and NO x emission levels were very satisfactory. Under conditions close to nominal power, CO emission levels were 225.3 ppm at 6% O 2 for pellet from almond tree and 351.6 ppm at 6% O 2 for pellet from olive tree. Regarding NO x emissions, the values were 365.8 ppm at 6% O 2 and 333.2 ppm at 6% O 2 for pellets from almond tree and olive tree, respectively. In general, these values were below those legally established by current legislation in European countries. Therefore, BIO System technology is a perfectly feasible option in terms of energy use and circular economy.

Suggested Citation

  • Valentín Molina-Moreno & Juan Carlos Leyva-Díaz & Jorge Sánchez-Molina, 2016. "Pellet as a Technological Nutrient within the Circular Economy Model: Comparative Analysis of Combustion Efficiency and CO and NO x Emissions for Pellets from Olive and Almond Trees," Energies, MDPI, vol. 9(10), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:777-:d:78977
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hall, D. O. & Rosillo-Calle, F. & de Groot, P., 1992. "Biomass energy : Lessons from case studies in developing countries," Energy Policy, Elsevier, vol. 20(1), pages 62-73, January.
    2. Verma, V.K. & Bram, S. & Delattin, F. & Laha, P. & Vandendael, I. & Hubin, A. & De Ruyck, J., 2012. "Agro-pellets for domestic heating boilers: Standard laboratory and real life performance," Applied Energy, Elsevier, vol. 90(1), pages 17-23.
    3. Persson, Tomas & Fiedler, Frank & Nordlander, Svante & Bales, Chris & Paavilainen, Janne, 2009. "Validation of a dynamic model for wood pellet boilers and stoves," Applied Energy, Elsevier, vol. 86(5), pages 645-656, May.
    4. Barbanera, M. & Lascaro, E. & Stanzione, V. & Esposito, A. & Altieri, R. & Bufacchi, M., 2016. "Characterization of pellets from mixing olive pomace and olive tree pruning," Renewable Energy, Elsevier, vol. 88(C), pages 185-191.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luigi Mastronardi & Luca Romagnoli, 2020. "Community-Based Cooperatives: A New Business Model for the Development of Italian Inner Areas," Sustainability, MDPI, vol. 12(5), pages 1-13, March.
    2. Okechukwu Okorie & Konstantinos Salonitis & Fiona Charnley & Mariale Moreno & Christopher Turner & Ashutosh Tiwari, 2018. "Digitisation and the Circular Economy: A Review of Current Research and Future Trends," Energies, MDPI, vol. 11(11), pages 1-31, November.
    3. Wen-Hsien Tsai & Shi-Yin Jhong, 2018. "Carbon Emissions Cost Analysis with Activity-Based Costing," Sustainability, MDPI, vol. 10(8), pages 1-26, August.
    4. Ionica Oncioiu & Sorinel Căpuşneanu & Mirela Cătălina Türkeș & Dan Ioan Topor & Dana-Maria Oprea Constantin & Andreea Marin-Pantelescu & Mihaela Ștefan Hint, 2018. "The Sustainability of Romanian SMEs and Their Involvement in the Circular Economy," Sustainability, MDPI, vol. 10(8), pages 1-19, August.
    5. Valentín Molina-Moreno & Juan Carlos Leyva-Díaz & Jorge Sánchez-Molina & Antonio Peña-García, 2017. "Proposal to Foster Sustainability through Circular Economy-Based Engineering: A Profitable Chain from Waste Management to Tunnel Lighting," Sustainability, MDPI, vol. 9(12), pages 1-9, December.
    6. Mónica Duque-Acevedo & Luis Jesús Belmonte-Ureña & Natalia Yakovleva & Francisco Camacho-Ferre, 2020. "Analysis of the Circular Economic Production Models and Their Approach in Agriculture and Agricultural Waste Biomass Management," IJERPH, MDPI, vol. 17(24), pages 1-32, December.
    7. Lucía Salguero-Puerta & Juan Carlos Leyva-Díaz & Francisco Joaquín Cortés-García & Valentín Molina-Moreno, 2019. "Sustainability Indicators Concerning Waste Management for Implementation of the Circular Economy Model on the University of Lome (Togo) Campus," IJERPH, MDPI, vol. 16(12), pages 1-21, June.
    8. Xiaorui Liu & Zhongyang Luo & Chunjiang Yu & Bitao Jin & Hanchao Tu, 2018. "Release Mechanism of Fuel-N into NO x and N 2 O Precursors during Pyrolysis of Rice Straw," Energies, MDPI, vol. 11(3), pages 1-13, February.
    9. Sara Calvo & Andrés Morales & Pedro Núñez-Cacho Utrilla & José Manuel Guaita Martínez, 2020. "Addressing Sustainable Social Change for All: Upcycled-Based Social Creative Businesses for the Transformation of Socio-Technical Regimes," IJERPH, MDPI, vol. 17(7), pages 1-16, April.
    10. Pedro Núñez-Cacho & Valentín Molina-Moreno & Francisco A. Corpas-Iglesias & Francisco J. Cortés-García, 2018. "Family Businesses Transitioning to a Circular Economy Model: The Case of “Mercadona”," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    11. Ozdemir, Saim & Şimşek, Aslı & Ozdemir, Serkan & Dede, Cemile, 2022. "Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization," Renewable Energy, Elsevier, vol. 190(C), pages 274-282.
    12. Youn Kue Na & Sungmin Kang, 2018. "Effects of Core Resource and Competence Characteristics of Sharing Economy Business on Shared Value, Distinctive Competitive Advantage, and Behavior Intention," Sustainability, MDPI, vol. 10(10), pages 1-17, September.
    13. Fatima Khitous & Fernanda Strozzi & Andrea Urbinati & Fernando Alberti, 2020. "A Systematic Literature Network Analysis of Existing Themes and Emerging Research Trends in Circular Economy," Sustainability, MDPI, vol. 12(4), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlon, Elisa & Verma, Vijay Kumar & Schwarz, Markus & Golicza, Laszlo & Prada, Alessandro & Baratieri, Marco & Haslinger, Walter & Schmidl, Christoph, 2015. "Experimental validation of a thermodynamic boiler model under steady state and dynamic conditions," Applied Energy, Elsevier, vol. 138(C), pages 505-516.
    2. Kougioumtzis, Michael Alexandros & Kanaveli, Ioanna Panagiota & Karampinis, Emmanouil & Grammelis, Panagiotis & Kakaras, Emmanuel, 2021. "Combustion of olive tree pruning pellets versus sunflower husk pellets at industrial boiler. Monitoring of emissions and combustion efficiency," Renewable Energy, Elsevier, vol. 171(C), pages 516-525.
    3. Stanisławski, Rafał & Robert Junga, & Nitsche, Marek, 2022. "Reduction of the CO emission from wood pellet small-scale boiler using model-based control," Energy, Elsevier, vol. 243(C).
    4. Amigun, Bamikole & Gorgens, Johann & Knoetze, Hansie, 2010. "Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance," Energy Policy, Elsevier, vol. 38(1), pages 312-322, January.
    5. Persson, Tomas & Wiertzema, Holger & Win, Kaung Myat & Bales, Chris, 2019. "Modelling of dynamics and stratification effects in pellet boilers," Renewable Energy, Elsevier, vol. 134(C), pages 769-782.
    6. El may, Yassine & Jeguirim, Mejdi & Dorge, Sophie & Trouvé, Gwenaelle & Said, Rachid, 2012. "Study on the thermal behavior of different date palm residues: Characterization and devolatilization kinetics under inert and oxidative atmospheres," Energy, Elsevier, vol. 44(1), pages 702-709.
    7. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    8. Kraiem, Nesrine & Jeguirim, Mejdi & Limousy, Lionel & Lajili, Marzouk & Dorge, Sophie & Michelin, Laure & Said, Rachid, 2014. "Impregnation of olive mill wastewater on dry biomasses: Impact on chemical properties and combustion performances," Energy, Elsevier, vol. 78(C), pages 479-489.
    9. Hall, D.O. & House, J.I., 1994. "Biomass energy and the global carbon balance," Renewable Energy, Elsevier, vol. 5(1), pages 58-66.
    10. Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
    11. Dávid Nagy & Péter Balogh & Zoltán Gabnai & József Popp & Judit Oláh & Attila Bai, 2018. "Economic Analysis of Pellet Production in Co-Digestion Biogas Plants," Energies, MDPI, vol. 11(5), pages 1-21, May.
    12. Jacek Wasilewski & Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Andrzej Kuranc, 2022. "Evaluation of Greenhouse Gas Emission Levels during the Combustion of Selected Types of Agricultural Biomass," Energies, MDPI, vol. 15(19), pages 1-14, October.
    13. Toscano, G. & Duca, D. & Amato, A. & Pizzi, A., 2014. "Emission from realistic utilization of wood pellet stove," Energy, Elsevier, vol. 68(C), pages 644-650.
    14. Taro Mori & Yusuke Iwama & Hirofumi Hayama & Emad Mushtaha, 2020. "Optimization of a Wood Pellet Boiler System Combined with CO 2 HPs in a Cold Climate Area in Japan," Energies, MDPI, vol. 13(21), pages 1-17, October.
    15. Marta Jach-Nocoń & Grzegorz Pełka & Wojciech Luboń & Tomasz Mirowski & Adam Nocoń & Przemysław Pachytel, 2021. "An Assessment of the Efficiency and Emissions of a Pellet Boiler Combusting Multiple Pellet Types," Energies, MDPI, vol. 14(15), pages 1-15, July.
    16. Huilu Yu & Youning Yan & Suocheng Dong, 2019. "A System Dynamics Model to Assess the Effectiveness of Governmental Support Policies for Renewable Electricity," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    17. Araceli Regueiro & Lucie Jezerská & David Patiño & Raquel Pérez-Orozco & Jan Nečas & Martin Žídek, 2017. "Experimental Study of the Viability of Low-Grade Biofuels in Small-Scale Appliances," Sustainability, MDPI, vol. 9(10), pages 1-16, October.
    18. Büchner, Daniel & Schraube, Christian & Carlon, Elisa & von Sonntag, Justus & Schwarz, Markus & Verma, Vijay Kumar & Ortwein, Andreas, 2015. "Survey of modern pellet boilers in Austria and Germany – System design and customer satisfaction of residential installations," Applied Energy, Elsevier, vol. 160(C), pages 390-403.
    19. Marrugo, Gloria & Valdés, Carlos F. & Gómez, Carlos & Chejne, Farid, 2019. "Pelletizing of Colombian agro-industrial biomasses with crude glycerol," Renewable Energy, Elsevier, vol. 134(C), pages 558-568.
    20. Sławomir Obidziński & Paweł Cwalina & Małgorzata Kowczyk-Sadowy & Aneta Sienkiewicz & Małgorzata Krasowska & Joanna Szyszlak-Bargłowicz & Grzegorz Zając & Rafał Kryński, 2024. "Effect of the Addition of Elderberry Waste to Sawdust on the Process of Pelletization and the Quality of Fuel Pellets," Energies, MDPI, vol. 17(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:777-:d:78977. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.