IDEAS home Printed from https://ideas.repec.org/a/gam/jwaste/v1y2023i2p23-388d1120039.html
   My bibliography  Save this article

Computational Modelling on Gasification Processes of Municipal Solid Wastes Including Molten Slag

Author

Listed:
  • Genevieve Soon

    (Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
    Interdisciplinary Graduate Programme, Graduate College, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore)

  • Hui Zhang

    (Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore)

  • Adrian Wing-Keung Law

    (Environmental Process Modelling Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
    School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore)

  • Chun Yang

    (School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore)

Abstract

The formulation of the CFD-DEM model, CD-MELT, is established in this study to include three-phase non-isothermal processes with simultaneous combustion and melting for gasification simulations. To demonstrate the model capability, CD-MELT is used to assess the need for slag recycling for the non-isothermal melting of municipal solid wastes (MSW) in a prototype waste-to-energy research facility. The simulation encompasses the full fixed-bed slagging gasification process, including chemical reactions and melting of MSW and slag. In order to assess the need for slag recycling, comparisons are made for the two cases of with and without, in terms of the slag mass, liquid slag volume fraction, exit gas composition, and temperature distribution in the gasifier. The prediction results enable the tracking of liquid molten slag as it permeates through the solids-packed bed for the first time in the literature as far as we are aware, which is crucial to address design considerations such as distribution of bed temperature and optimal location for slag-tap holes at the bottom, as well as potential slag clogging within the porous media. The model also predicts an uneven and intermittent slag permeation through the packed bed without the recycling, and provides a plausible explanation for the operators’ experience of why slag recycling is important for process stability. Finally, the predicted slag outlet temperature using the proposed CFD approach also agrees well with the measurement data published in an earlier case study for the same facility.

Suggested Citation

  • Genevieve Soon & Hui Zhang & Adrian Wing-Keung Law & Chun Yang, 2023. "Computational Modelling on Gasification Processes of Municipal Solid Wastes Including Molten Slag," Waste, MDPI, vol. 1(2), pages 1-19, April.
  • Handle: RePEc:gam:jwaste:v:1:y:2023:i:2:p:23-388:d:1120039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-0391/1/2/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-0391/1/2/23/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Feng, YanHui & Gao, Jie & Feng, Daili & Zhang, XinXin, 2019. "Modeling of the molten blast furnace slag particle deposition on the wall including phase change and heat transfer," Applied Energy, Elsevier, vol. 248(C), pages 288-298.
    2. Ping Wang & Mehrdad Massoudi, 2013. "Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions," Energies, MDPI, vol. 6(2), pages 1-23, February.
    3. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    4. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabela Wardach-Świȩcicka & Dariusz Kardaś, 2024. "Biomass Moving Bed Combustion Analysis via Two-Way Coupling of Solid–Fluid Interactions Using Discrete Element Method and Computational Fluid Dynamics Method," Energies, MDPI, vol. 17(14), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qiang & Wang, Qian & Zhang, Jiansheng & Wang, Weiliang & Liu, Jizhen, 2021. "Transition temperature and thermal conduction behavior of slag in gasification process," Energy, Elsevier, vol. 222(C).
    2. Salem, Ahmed M. & Elsherbiny, Khaled, 2022. "Innovative concept for the effect of changing gasifying medium and injection points on syngas quality: Towards higher H2 production, and Free-CO2 emissions," Energy, Elsevier, vol. 261(PB).
    3. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    4. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    5. Istrate, Ioan-Robert & Medina-Martos, Enrique & Galvez-Martos, Jose-Luis & Dufour, Javier, 2021. "Assessment of the energy recovery potential of municipal solid waste under future scenarios," Applied Energy, Elsevier, vol. 293(C).
    6. Ramos, Ana & Rouboa, Abel, 2020. "Syngas production strategies from biomass gasification: Numerical studies for operational conditions and quality indexes," Renewable Energy, Elsevier, vol. 155(C), pages 1211-1221.
    7. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    8. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    9. Wang, Linzheng & Zhang, Ruizhi & Deng, Ruiqu & Liu, Zeqing & Luo, Yonghao, 2023. "Comprehensive parametric study of fixed-bed co-gasification process through Multiple Thermally Thick Particle (MTTP) model," Applied Energy, Elsevier, vol. 348(C).
    10. Nobre, Catarina & Longo, Andrei & Vilarinho, Cândida & Gonçalves, Margarida, 2020. "Gasification of pellets produced from blends of biomass wastes and refuse derived fuel chars," Renewable Energy, Elsevier, vol. 154(C), pages 1294-1303.
    11. Sérgio Ferreira & Eliseu Monteiro & Luís Calado & Valter Silva & Paulo Brito & Cândida Vilarinho, 2019. "Experimental and Modeling Analysis of Brewers´ Spent Grains Gasification in a Downdraft Reactor," Energies, MDPI, vol. 12(23), pages 1-18, November.
    12. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    13. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    14. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    15. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    16. Mingke Shen & Kunzan Qiu & Long Zhang & Zhenyu Huang & Zhihua Wang & Jianzhong Liu, 2015. "Influence of Coal Blending on Ash Fusibility in Reducing Atmosphere," Energies, MDPI, vol. 8(6), pages 1-20, May.
    17. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    18. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
    19. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).
    20. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:1:y:2023:i:2:p:23-388:d:1120039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.