IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p3370-3385d48704.html
   My bibliography  Save this article

Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

Author

Listed:
  • Insoo Ye

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea)

  • Junho Oh

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea)

  • Changkook Ryu

    (School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea)

Abstract

The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux). For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

Suggested Citation

  • Insoo Ye & Junho Oh & Changkook Ryu, 2015. "Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification," Energies, MDPI, vol. 8(5), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:3370-3385:d:48704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/3370/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/3370/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Wang & Mehrdad Massoudi, 2013. "Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions," Energies, MDPI, vol. 6(2), pages 1-23, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    2. Mingke Shen & Kunzan Qiu & Long Zhang & Zhenyu Huang & Zhihua Wang & Jianzhong Liu, 2015. "Influence of Coal Blending on Ash Fusibility in Reducing Atmosphere," Energies, MDPI, vol. 8(6), pages 1-20, May.
    3. M. Shahabuddin & Tanvir Alam, 2022. "Gasification of Solid Fuels (Coal, Biomass and MSW): Overview, Challenges and Mitigation Strategies," Energies, MDPI, vol. 15(12), pages 1-20, June.
    4. Kareemulla, Dudekula & Gusev, Sergey & Bhattacharya, Sankar & Mahajani, Sanjay M., 2024. "Entrained-flow pyrolysis and (co-)gasification characteristics of Indian high-ash coals," Energy, Elsevier, vol. 294(C).
    5. Ping Wang & Nicholas Means & Dushyant Shekhawat & David Berry & Mehrdad Massoudi, 2015. "Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review," Energies, MDPI, vol. 8(10), pages 1-31, September.
    6. Wu, Guixuan & Seebold, Sören & Yazhenskikh, Elena & Tanner, Joanne & Hack, Klaus & Müller, Michael, 2019. "Slag mobility in entrained flow gasifiers optimized using a new reliable viscosity model of iron oxide-containing multicomponent melts," Applied Energy, Elsevier, vol. 236(C), pages 837-849.
    7. Chen, Zhibin & Wang, Li & Huang, Zhiwei & Zhuang, Ping & Shi, Yiguang & Evrendilek, Fatih & Huang, Shengzheng & He, Yao & Liu, Jingyong, 2024. "Dynamic and optimal ash-to-gas responses of oxy-fuel and air combustions of soil remediation biomass," Renewable Energy, Elsevier, vol. 225(C).
    8. Taufiq, Bin Nur & Kikuchi, Yasunori & Ishimoto, Takayoshi & Honda, Kuniaki & Koyama, Michihisa, 2015. "Conceptual design of light integrated gasification fuel cell based on thermodynamic process simulation," Applied Energy, Elsevier, vol. 147(C), pages 486-499.
    9. Hossam A. Gabbar & Mohamed Aboughaly & Stefano Russo, 2017. "Conceptual Design and Energy Analysis of Integrated Combined Cycle Gasification System," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    10. Genevieve Soon & Hui Zhang & Adrian Wing-Keung Law & Chun Yang, 2023. "Computational Modelling on Gasification Processes of Municipal Solid Wastes Including Molten Slag," Waste, MDPI, vol. 1(2), pages 1-19, April.
    11. Li, Qiang & Wang, Qian & Zhang, Jiansheng & Wang, Weiliang & Liu, Jizhen, 2021. "Transition temperature and thermal conduction behavior of slag in gasification process," Energy, Elsevier, vol. 222(C).
    12. Wu Qin & Changfeng Lin & Jianye Wang & Xianbin Xiao & Changqing Dong & Li Wei, 2016. "Study on Reaction Characteristics of Chemical-Looping Combustion between Maize Stalk and High Index Facet Iron Oxide," Energies, MDPI, vol. 9(8), pages 1-11, August.
    13. Vijayaragavan Krishnamoorthy & Sarma V. Pisupati, 2015. "A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers," Energies, MDPI, vol. 8(9), pages 1-34, September.
    14. Young Mun Lee & Heeyoon Chung & Seon Ho Kim & Hyeng Sub Bae & Hyung Hee Cho, 2017. "Optimization of the Heating Element in a Gas-Gas Heater Using an Integrated Analysis Model," Energies, MDPI, vol. 10(12), pages 1-19, November.
    15. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:3370-3385:d:48704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.