IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i1p402-419d32316.html
   My bibliography  Save this article

Modeling and Design Optimization of Variable-Speed Wind Turbine Systems

Author

Listed:
  • Ulas Eminoglu

    (Department of Electrical and Electronic Engineering, Nigde University, Nigde 51245, Turkey)

  • Saffet Ayasun

    (Department of Electrical and Electronic Engineering, Nigde University, Nigde 51245, Turkey)

Abstract

As a result of the increase in energy demand and government subsidies, the usage of wind turbine system (WTS) has increased dramatically. Due to the higher energy production of a variable-speed WTS as compared to a fixed-speed WTS, the demand for this type of WTS has increased. In this study, a new method for the calculation of the power output of variable-speed WTSs is proposed. The proposed model is developed from the S-type curve used for population growth, and is only a function of the rated power and rated (nominal) wind speed. It has the advantage of enabling the user to calculate power output without using the rotor power coefficient. Additionally, by using the developed model, a mathematical method to calculate the value of rated wind speed in terms of turbine capacity factor and the scale parameter of the Weibull distribution for a given wind site is also proposed. Design optimization studies are performed by using the particle swarm optimization (PSO) and artificial bee colony (ABC) algorithms, which are applied into this type of problem for the first time. Different sites such as Northern and Mediterranean sites of Europe have been studied. Analyses for various parameters are also presented in order to evaluate the effect of rated wind speed on the design parameters and produced energy cost. Results show that proposed models are reliable and very useful for modeling and optimization of WTSs design by taking into account the wind potential of the region. Results also show that the PSO algorithm has better performance than the ABC algorithm for this type of problem.

Suggested Citation

  • Ulas Eminoglu & Saffet Ayasun, 2014. "Modeling and Design Optimization of Variable-Speed Wind Turbine Systems," Energies, MDPI, vol. 7(1), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:402-419:d:32316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/1/402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/1/402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, H. & Chen, Z., 2009. "Design optimization and site matching of direct-drive permanent magnet wind power generator systems," Renewable Energy, Elsevier, vol. 34(4), pages 1175-1184.
    2. Oscar Barambones, 2012. "Sliding Mode Control Strategy for Wind Turbine Power Maximization," Energies, MDPI, vol. 5(7), pages 1-21, July.
    3. Kongnam, C. & Nuchprayoon, S., 2010. "A particle swarm optimization for wind energy control problem," Renewable Energy, Elsevier, vol. 35(11), pages 2431-2438.
    4. Maki, Kevin & Sbragio, Ricardo & Vlahopoulos, Nickolas, 2012. "System design of a wind turbine using a multi-level optimization approach," Renewable Energy, Elsevier, vol. 43(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weijie Cheng & Renli Cheng & Jun Shi & Cong Zhang & Gaoxing Sun & Dong Hua, 2018. "Interval Power Flow Analysis Considering Interval Output of Wind Farms through Affine Arithmetic and Optimizing-Scenarios Method," Energies, MDPI, vol. 11(11), pages 1-23, November.
    2. Chih-Hong Lin, 2016. "Wind Turbine Driving a PM Synchronous Generator Using Novel Recurrent Chebyshev Neural Network Control with the Ideal Learning Rate," Energies, MDPI, vol. 9(6), pages 1-25, June.
    3. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    4. Carneiro, Tatiane C. & Melo, Sofia P. & Carvalho, Paulo C.M. & Braga, Arthur Plínio de S., 2016. "Particle Swarm Optimization method for estimation of Weibull parameters: A case study for the Brazilian northeast region," Renewable Energy, Elsevier, vol. 86(C), pages 751-759.
    5. Chen, Jincheng & Wang, Feng & Stelson, Kim A., 2018. "A mathematical approach to minimizing the cost of energy for large utility wind turbines," Applied Energy, Elsevier, vol. 228(C), pages 1413-1422.
    6. Zhiqiang Yang & Minghui Yin & Yan Xu & Yun Zou & Zhao Yang Dong & Qian Zhou, 2016. "Inverse Aerodynamic Optimization Considering Impacts of Design Tip Speed Ratio for Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    7. Yin, Minghui & Yang, Zhiqiang & Xu, Yan & Liu, Jiankun & Zhou, Lianjun & Zou, Yun, 2018. "Aerodynamic optimization for variable-speed wind turbines based on wind energy capture efficiency," Applied Energy, Elsevier, vol. 221(C), pages 508-521.
    8. Minh Quan Duong & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Kim Hung Le, 2015. "Improving Transient Stability in a Grid-Connected Squirrel-Cage Induction Generator Wind Turbine System Using a Fuzzy Logic Controller," Energies, MDPI, vol. 8(7), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    2. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    3. Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
    4. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    5. Yu-Huei Cheng & Ching-Ming Lai, 2017. "Control Strategy Optimization for Parallel Hybrid Electric Vehicles Using a Memetic Algorithm," Energies, MDPI, vol. 10(3), pages 1-21, March.
    6. Justo, Jackson John & Mwasilu, Francis & Jung, Jin-Woo, 2015. "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 447-467.
    7. K. Padmanathan & N. Kamalakannan & P. Sanjeevikumar & F. Blaabjerg & J. B. Holm-Nielsen & G. Uma & R. Arul & R. Rajesh & A. Srinivasan & J. Baskaran, 2019. "Conceptual Framework of Antecedents to Trends on Permanent Magnet Synchronous Generators for Wind Energy Conversion Systems," Energies, MDPI, vol. 12(13), pages 1-39, July.
    8. Sung-Won Lee & Kwan-Ho Chun, 2019. "Adaptive Sliding Mode Control for PMSG Wind Turbine Systems," Energies, MDPI, vol. 12(4), pages 1-17, February.
    9. Rodrigo Teixeira Pinto & Sílvio Fragoso Rodrigues & Edwin Wiggelinkhuizen & Ricardo Scherrer & Pavol Bauer & Jan Pierik, 2012. "Operation and Power Flow Control of Multi-Terminal DC Networks for Grid Integration of Offshore Wind Farms Using Genetic Algorithms," Energies, MDPI, vol. 6(1), pages 1-26, December.
    10. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    11. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    12. Oscar Barambones & Jose M. Gonzalez de Durana & Isidro Calvo, 2018. "Adaptive Sliding Mode Control for a Double Fed Induction Generator Used in an Oscillating Water Column System," Energies, MDPI, vol. 11(11), pages 1-27, October.
    13. Yancai Xiao & Tieling Zhang & Zeyu Ding & Chunya Li, 2016. "The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters," Energies, MDPI, vol. 9(5), pages 1-17, May.
    14. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    15. Ozan Gözcü & Taeseong Kim & David Robert Verelst & Michael K. McWilliam, 2022. "Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine," Energies, MDPI, vol. 15(9), pages 1-22, April.
    16. Jenn-Jong Shieh & Kuo-Ing Hwu & Sheng-Ju Chen, 2023. "Perspective of Voltage-Fed Single-Phase Multilevel DC-AC Inverters," Energies, MDPI, vol. 16(2), pages 1-22, January.
    17. Fischer, Gunter Reinald & Kipouros, Timoleon & Savill, Anthony Mark, 2014. "Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables," Renewable Energy, Elsevier, vol. 62(C), pages 506-515.
    18. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    19. Siddhartha, & Sharma, Naveen & Varun,, 2012. "A particle swarm optimization algorithm for optimization of thermal performance of a smooth flat plate solar air heater," Energy, Elsevier, vol. 38(1), pages 406-413.
    20. Carneiro, Tatiane C. & Melo, Sofia P. & Carvalho, Paulo C.M. & Braga, Arthur Plínio de S., 2016. "Particle Swarm Optimization method for estimation of Weibull parameters: A case study for the Brazilian northeast region," Renewable Energy, Elsevier, vol. 86(C), pages 751-759.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:402-419:d:32316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.