IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v102y2017ipbp481-486.html
   My bibliography  Save this article

Analysis of the maximization of wind turbine energy yield using a continuously variable transmission system

Author

Listed:
  • Giallanza, A.
  • Porretto, M.
  • Cannizzaro, L.
  • Marannano, G.

Abstract

In this paper, an analytic study of the subject of mechanical power transmission in HAWT wind turbine has been carried out. For the most part, the study analyzes the use of continuously variable transmission (CVT) in order to allow the turbine and the electric generator to couple, allowing in turn, an unremitting transmission ratio adjustment. In low-wind sites, the design criteria suggest an oversizing of the wind turbine in order to generate adequate electrical power even at low wind speed. The proposed solution enhances the space of operating points since it allows the electric generator to release the rotational speed from the turbine one (limited due to structural integrity). Employing a CVT transmission, the modulation system of the input power to the turbine starts operating at higher wind speeds when compared to a conventional direct-drive case: this corresponds with the possibility to fully exploit the wind power at a higher speed range, therefore maximizing the wind turbine’s energy production. The analysis has showed that, in the case of CVT configuration, the annual energy yield increases of about 50% compared to direct-drive solution.

Suggested Citation

  • Giallanza, A. & Porretto, M. & Cannizzaro, L. & Marannano, G., 2017. "Analysis of the maximization of wind turbine energy yield using a continuously variable transmission system," Renewable Energy, Elsevier, vol. 102(PB), pages 481-486.
  • Handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:481-486
    DOI: 10.1016/j.renene.2016.10.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116309442
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jowder, Fawzi A.L., 2009. "Wind power analysis and site matching of wind turbine generators in Kingdom of Bahrain," Applied Energy, Elsevier, vol. 86(4), pages 538-545, April.
    2. Shamshirband, Shahaboddin & Petković, Dalibor & Amini, Amineh & Anuar, Nor Badrul & Nikolić, Vlastimir & Ćojbašić, Žarko & Mat Kiah, Miss Laiha & Gani, Abdullah, 2014. "Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission," Energy, Elsevier, vol. 67(C), pages 623-630.
    3. Yin, Xiu-xing & Lin, Yong-gang & Li, Wei & Liu, Hong-wei & Gu, Ya-jing, 2014. "Output power control for hydro-viscous transmission based continuously variable speed wind turbine," Renewable Energy, Elsevier, vol. 72(C), pages 395-405.
    4. Dong, Yao & Wang, Jianzhou & Jiang, He & Shi, Xiaomeng, 2013. "Intelligent optimized wind resource assessment and wind turbines selection in Huitengxile of Inner Mongolia, China," Applied Energy, Elsevier, vol. 109(C), pages 239-253.
    5. Maki, Kevin & Sbragio, Ricardo & Vlahopoulos, Nickolas, 2012. "System design of a wind turbine using a multi-level optimization approach," Renewable Energy, Elsevier, vol. 43(C), pages 101-110.
    6. EL-Shimy, M., 2010. "Optimal site matching of wind turbine generator: Case study of the Gulf of Suez region in Egypt," Renewable Energy, Elsevier, vol. 35(8), pages 1870-1878.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Gang & Zhu, Weidong, 2022. "Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters," Renewable Energy, Elsevier, vol. 189(C), pages 1120-1132.
    2. Govind, Bala, 2017. "Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine," Applied Energy, Elsevier, vol. 199(C), pages 479-494.
    3. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    4. Gang Li & Weidong Zhu, 2022. "A Review on Up-to-Date Gearbox Technologies and Maintenance of Tidal Current Energy Converters," Energies, MDPI, vol. 15(23), pages 1-24, December.
    5. Yu, Jin & Dong, Xiaohan & Song, Yurun & Zhang, Yangguang & Zhang, Huasen & Yang, Xianshen & Xu, Zhongjie & Liu, Yupeng, 2022. "Energy efficiency optimization of a compound coupled hydro-mechanical transmission for heavy-duty vehicles," Energy, Elsevier, vol. 252(C).
    6. Cristina Vázquez-Hernández & Javier Serrano-González & Gabriel Centeno, 2017. "A Market-Based Analysis on the Main Characteristics of Gearboxes Used in Onshore Wind Turbines," Energies, MDPI, vol. 10(11), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafiqur Rehman & Salman A. Khan, 2016. "Fuzzy Logic Based Multi-Criteria Wind Turbine Selection Strategy—A Case Study of Qassim, Saudi Arabia," Energies, MDPI, vol. 9(11), pages 1-26, October.
    2. Perkin, Samuel & Garrett, Deon & Jensson, Pall, 2015. "Optimal wind turbine selection methodology: A case-study for Búrfell, Iceland," Renewable Energy, Elsevier, vol. 75(C), pages 165-172.
    3. A. G. Olabi & Tabbi Wilberforce & Khaled Elsaid & Tareq Salameh & Enas Taha Sayed & Khaled Saleh Husain & Mohammad Ali Abdelkareem, 2021. "Selection Guidelines for Wind Energy Technologies," Energies, MDPI, vol. 14(11), pages 1-34, June.
    4. Francesco Bottiglione & Giacomo Mantriota & Marco Valle, 2018. "Power-Split Hydrostatic Transmissions for Wind Energy Systems," Energies, MDPI, vol. 11(12), pages 1-15, December.
    5. Akdağ, Seyit Ahmet & Güler, Önder, 2018. "Alternative Moment Method for wind energy potential and turbine energy output estimation," Renewable Energy, Elsevier, vol. 120(C), pages 69-77.
    6. Arias-Rosales, Andrés & Osorio-Gómez, Gilberto, 2018. "Wind turbine selection method based on the statistical analysis of nominal specifications for estimating the cost of energy," Applied Energy, Elsevier, vol. 228(C), pages 980-998.
    7. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang, 2016. "Wind speed probability distribution estimation and wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 881-899.
    8. Shafiqur Rehman & Salman A. Khan & Luai M. Alhems, 2020. "A Rule-Based Fuzzy Logic Methodology for Multi-Criteria Selection of Wind Turbines," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    9. Deep, Sneh & Sarkar, Arnab & Ghawat, Mayur & Rajak, Manoj Kumar, 2020. "Estimation of the wind energy potential for coastal locations in India using the Weibull model," Renewable Energy, Elsevier, vol. 161(C), pages 319-339.
    10. Carrillo, C. & Obando Montaño, A.F. & Cidrás, J. & Díaz-Dorado, E., 2013. "Review of power curve modelling for wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 572-581.
    11. Li, Gang & Zhu, Weidong, 2022. "Time-delay closed-loop control of an infinitely variable transmission system for tidal current energy converters," Renewable Energy, Elsevier, vol. 189(C), pages 1120-1132.
    12. Joselin Herbert, G.M. & Iniyan, S. & Amutha, D., 2014. "A review of technical issues on the development of wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 619-641.
    13. Govind, Bala, 2017. "Increasing the operational capability of a horizontal axis wind turbine by its integration with a vertical axis wind turbine," Applied Energy, Elsevier, vol. 199(C), pages 479-494.
    14. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    15. Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
    16. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    17. Ohunakin, Olayinka S., 2011. "Wind resources in North-East geopolitical zone, Nigeria: An assessment of the monthly and seasonal characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1977-1987, May.
    18. Mingzhu Tang & Wei Chen & Qi Zhao & Huawei Wu & Wen Long & Bin Huang & Lida Liao & Kang Zhang, 2019. "Development of an SVR Model for the Fault Diagnosis of Large-Scale Doubly-Fed Wind Turbines Using SCADA Data," Energies, MDPI, vol. 12(17), pages 1-15, September.
    19. Tonglin Fu & Chen Wang, 2018. "A Hybrid Wind Speed Forecasting Method and Wind Energy Resource Analysis Based on a Swarm Intelligence Optimization Algorithm and an Artificial Intelligence Model," Sustainability, MDPI, vol. 10(11), pages 1-24, October.
    20. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:102:y:2017:i:pb:p:481-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.