IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v43y2012icp101-110.html
   My bibliography  Save this article

System design of a wind turbine using a multi-level optimization approach

Author

Listed:
  • Maki, Kevin
  • Sbragio, Ricardo
  • Vlahopoulos, Nickolas

Abstract

In this paper a multi-level system design (MLS) algorithm is presented and utilized for a wind turbine system analysis. The MLS guides the decision making process for designing a complex system where many alternatives and many mutually competing objectives and disciplines need to be considered and evaluated. Mathematical relationships between the design variables and the multiple discipline performance objectives are developed adaptively as the various design considerations are evaluated and as the design is being evolved. These relationships are employed for rewarding performance improvement during the decision making process by allocating more resources and influence to the disciplines which exhibit the improvement. Simulation tools developed by the National Renewable Energy Laboratory (NREL) are employed in the wind turbine design analysis. The Cost Of Energy (COE) comprises the overall system level objective, while performance improvements at two technical design disciplines are pursued at the same time. The optimal design of the blade geometry for maximum Annual Energy Production (AEP), and the structural design of the blade for minimum bending moment at the root of the blade comprise the two technical design disciplines. Scalar metamodels are developed for linking the design variables with the performance metrics associated with the design of the blade geometry. Main characteristics of the wind turbine, namely, the rotor diameter, the rotational speed, the maximum rated power, the hub height, the structural characteristics of the blade, and the geometric characteristics of the blade (distribution of thickness, twist angle, and chord) are employed as design variables for the overall design analysis. The optimization results and the physical insight which can be gained through a sensitivity analysis for the optimal configuration are presented and discussed.

Suggested Citation

  • Maki, Kevin & Sbragio, Ricardo & Vlahopoulos, Nickolas, 2012. "System design of a wind turbine using a multi-level optimization approach," Renewable Energy, Elsevier, vol. 43(C), pages 101-110.
  • Handle: RePEc:eee:renene:v:43:y:2012:i:c:p:101-110
    DOI: 10.1016/j.renene.2011.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811100629X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emami, Alireza & Noghreh, Pirooz, 2010. "New approach on optimization in placement of wind turbines within wind farm by genetic algorithms," Renewable Energy, Elsevier, vol. 35(7), pages 1559-1564.
    2. Stephen Leary & Atul Bhaskar & Andy Keane, 2003. "Optimal orthogonal-array-based latin hypercubes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(5), pages 585-598.
    3. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    2. Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    4. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.
    5. Jung-Tae Lee & Hyun-Goo Kim & Yong-Heack Kang & Jin-Young Kim, 2019. "Determining the Optimized Hub Height of Wind Turbine Using the Wind Resource Map of South Korea," Energies, MDPI, vol. 12(15), pages 1-13, July.
    6. Jenn-Jong Shieh & Kuo-Ing Hwu & Sheng-Ju Chen, 2023. "Perspective of Voltage-Fed Single-Phase Multilevel DC-AC Inverters," Energies, MDPI, vol. 16(2), pages 1-22, January.
    7. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    8. Iqbal, M. & Azam, M. & Naeem, M. & Khwaja, A.S. & Anpalagan, A., 2014. "Optimization classification, algorithms and tools for renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 640-654.
    9. Giallanza, A. & Porretto, M. & Cannizzaro, L. & Marannano, G., 2017. "Analysis of the maximization of wind turbine energy yield using a continuously variable transmission system," Renewable Energy, Elsevier, vol. 102(PB), pages 481-486.
    10. Jie Zhu & Xin Cai & Rongrong Gu, 2017. "Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 10(1), pages 1-18, January.
    11. Escalera Mendoza, Alejandra S. & Griffith, D. Todd & Jeong, Michael & Qin, Chris & Loth, Eric & Phadnis, Mandar & Pao, Lucy & Selig, Michael S., 2023. "Aero-structural rapid screening of new design concepts for offshore wind turbines," Renewable Energy, Elsevier, vol. 219(P2).
    12. Bertašienė, Agnė & Azzopardi, Brian, 2015. "Synergies of Wind Turbine control techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 336-342.
    13. Ulas Eminoglu & Saffet Ayasun, 2014. "Modeling and Design Optimization of Variable-Speed Wind Turbine Systems," Energies, MDPI, vol. 7(1), pages 1-18, January.
    14. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    15. Zhu, Jie & Zhou, Zhong & Cai, Xin, 2020. "Multi-objective aerodynamic and structural integrated optimization design of wind turbines at the system level through a coupled blade-tower model," Renewable Energy, Elsevier, vol. 150(C), pages 523-537.
    16. Fischer, Gunter Reinald & Kipouros, Timoleon & Savill, Anthony Mark, 2014. "Multi-objective optimisation of horizontal axis wind turbine structure and energy production using aerofoil and blade properties as design variables," Renewable Energy, Elsevier, vol. 62(C), pages 506-515.
    17. Barooni, M. & Ale Ali, N. & Ashuri, T., 2018. "An open-source comprehensive numerical model for dynamic response and loads analysis of floating offshore wind turbines," Energy, Elsevier, vol. 154(C), pages 442-454.
    18. Ozan Gözcü & Taeseong Kim & David Robert Verelst & Michael K. McWilliam, 2022. "Swept Blade Dynamic Investigations for a 100 kW Small Wind Turbine," Energies, MDPI, vol. 15(9), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    2. Song, Mengxuan & Wen, Yi & Duan, Bin & Wang, Jun & Gong, Qi, 2017. "Micro-siting optimization of a wind farm built in multiple phases," Energy, Elsevier, vol. 137(C), pages 95-103.
    3. Yin, Peng-Yeng & Wu, Tsai-Hung & Hsu, Ping-Yi, 2017. "Simulation based risk management for multi-objective optimal wind turbine placement using MOEA/D," Energy, Elsevier, vol. 141(C), pages 579-597.
    4. Wu, Chutian & Yang, Xiaolei & Zhu, Yaxin, 2021. "On the design of potential turbine positions for physics-informed optimization of wind farm layout," Renewable Energy, Elsevier, vol. 164(C), pages 1108-1120.
    5. Park, Jinkyoo & Law, Kincho H., 2015. "Layout optimization for maximizing wind farm power production using sequential convex programming," Applied Energy, Elsevier, vol. 151(C), pages 320-334.
    6. Dhunny, A.Z. & Allam, Z. & Lobine, D. & Lollchund, M.R., 2019. "Sustainable renewable energy planning and wind farming optimization from a biodiversity perspective," Energy, Elsevier, vol. 185(C), pages 1282-1297.
    7. Biswas, Partha P. & Suganthan, P.N. & Amaratunga, Gehan A.J., 2018. "Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization," Renewable Energy, Elsevier, vol. 115(C), pages 326-337.
    8. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Investigation into the optimal wind turbine layout patterns for a Hong Kong offshore wind farm," Energy, Elsevier, vol. 73(C), pages 430-442.
    9. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    10. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    11. Serrano González, Javier & Burgos Payán, Manuel & Santos, Jesús Manuel Riquelme & González-Longatt, Francisco, 2014. "A review and recent developments in the optimal wind-turbine micro-siting problem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 133-144.
    12. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    13. Saavedra-Moreno, B. & Salcedo-Sanz, S. & Paniagua-Tineo, A. & Prieto, L. & Portilla-Figueras, A., 2011. "Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms," Renewable Energy, Elsevier, vol. 36(11), pages 2838-2844.
    14. Abdulrahman, Mamdouh & Wood, David, 2017. "Investigating the Power-COE trade-off for wind farm layout optimization considering commercial turbine selection and hub height variation," Renewable Energy, Elsevier, vol. 102(PB), pages 267-278.
    15. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    16. Böhme, Gustavo S. & Fadigas, Eliane A. & Gimenes, André L.V. & Tassinari, Carlos E.M., 2018. "Wake effect measurement in complex terrain - A case study in Brazilian wind farms," Energy, Elsevier, vol. 161(C), pages 277-283.
    17. Ashuri, T. & Zaaijer, M.B. & Martins, J.R.R.A. & van Bussel, G.J.W. & van Kuik, G.A.M., 2014. "Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy," Renewable Energy, Elsevier, vol. 68(C), pages 893-905.
    18. Jung-Tae Lee & Hyun-Goo Kim & Yong-Heack Kang & Jin-Young Kim, 2019. "Determining the Optimized Hub Height of Wind Turbine Using the Wind Resource Map of South Korea," Energies, MDPI, vol. 12(15), pages 1-13, July.
    19. Rajper, Samina & Amin, Imran J., 2012. "Optimization of wind turbine micrositing: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5485-5492.
    20. Wan, Chunqiu & Wang, Jun & Yang, Geng & Gu, Huajie & Zhang, Xing, 2012. "Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy," Renewable Energy, Elsevier, vol. 48(C), pages 276-286.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:43:y:2012:i:c:p:101-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.