IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1450-d112765.html
   My bibliography  Save this article

Low-Load Limit in a Diesel-Ignited Gas Engine

Author

Listed:
  • Richard Hutter

    (Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland
    Current address: Sonneggstrasse 3, 8092 Zurich, Switzerland.)

  • Johannes Ritzmann

    (Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland)

  • Philipp Elbert

    (Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland)

  • Christopher Onder

    (Institute for Dynamic Systems and Control, ETH Zurich, 8092 Zurich, Switzerland)

Abstract

The lean-burn capability of the Diesel-ignited gas engine combined with its potential for high efficiency and low CO 2 emissions makes this engine concept one of the most promising alternative fuel converters for passenger cars. Instead of using a spark plug, the ignition relies on the compression-ignited Diesel fuel providing ignition centers for the homogeneous air-gas mixture. In this study the amount of Diesel is reduced to the minimum amount required for the desired ignition. The low-load operation of such an engine is known to be challenging, as hydrocarbon (HC) emissions rise. The objective of this study is to develop optimal low-load operation strategies for the input variables equivalence ratio and exhaust gas recirculation (EGR) rate. A physical engine model helps to investigate three important limitations, namely maximum acceptable HC emissions, minimal CO 2 reduction, and minimal exhaust gas temperature. An important finding is the fact that the high HC emissions under low-load and lean conditions are a consequence of the inability to raise the gas equivalence ratio resulting in a poor flame propagation. The simulations on the various low-load strategies reveal the conflicting demand of lean combustion with low CO 2 emissions and stoichiometric operation with low HC emissions, as well as the minimal feasible dual-fuel load of 3.2 bar brake mean effective pressure.

Suggested Citation

  • Richard Hutter & Johannes Ritzmann & Philipp Elbert & Christopher Onder, 2017. "Low-Load Limit in a Diesel-Ignited Gas Engine," Energies, MDPI, vol. 10(10), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1450-:d:112765
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1450/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1450/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    2. Tobias Ott & Christopher Onder & Lino Guzzella, 2013. "Hybrid-Electric Vehicle with Natural Gas-Diesel Engine," Energies, MDPI, vol. 6(7), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu-Hui Peng & Yu-Peng Huang & Jia-You Tang & Qi-Feng Huang & Yi-Ran Huang, 2018. "Experimental Study on the Effects of Air Supply Control on Combustion and Emissions Performance at Medium and Low Load for a Dual-Fuel Diesel Engine," Energies, MDPI, vol. 11(11), pages 1-14, October.
    2. Hua Zhou & Hong-Wei Zhao & Yu-Peng Huang & Jian-Hui Wei & Yu-Hui Peng, 2019. "Effects of Injection Timing on Combustion and Emission Performance of Dual-Fuel Diesel Engine under Low to Medium Load Conditions," Energies, MDPI, vol. 12(12), pages 1-14, June.
    3. Elizabeth Lindstad & Gunnar S. Eskeland & Agathe Rialland & Anders Valland, 2020. "Decarbonizing Maritime Transport: The Importance of Engine Technology and Regulations for LNG to Serve as a Transition Fuel," Sustainability, MDPI, vol. 12(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hussein A. Mahmood & Nor Mariah. Adam & B. B. Sahari & S. U. Masuri, 2017. "New Design of a CNG-H 2 -AIR Mixer for Internal Combustion Engines: An Experimental and Numerical Study," Energies, MDPI, vol. 10(9), pages 1-27, September.
    2. La Xiang & Enzhe Song & Yu Ding, 2018. "A Two-Zone Combustion Model for Knocking Prediction of Marine Natural Gas SI Engines," Energies, MDPI, vol. 11(3), pages 1-23, March.
    3. Christopher H. T. Lee & Chunhua Liu & K. T. Chau, 2014. "A Magnetless Axial-Flux Machine for Range-Extended Electric Vehicles," Energies, MDPI, vol. 7(3), pages 1-17, March.
    4. Florian Zurbriggen & Richard Hutter & Christopher Onder, 2016. "Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine," Energies, MDPI, vol. 9(1), pages 1-19, January.
    5. Hall, Carrie & Kassa, Mateos, 2021. "Advances in combustion control for natural gas–diesel dual fuel compression ignition engines in automotive applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    6. Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
    7. Tobias Nüesch & Philipp Elbert & Michael Flankl & Christopher Onder & Lino Guzzella, 2014. "Convex Optimization for the Energy Management of Hybrid Electric Vehicles Considering Engine Start and Gearshift Costs," Energies, MDPI, vol. 7(2), pages 1-23, February.
    8. Ioan Aschilean & Mihai Varlam & Mihai Culcer & Mariana Iliescu & Mircea Raceanu & Adrian Enache & Maria Simona Raboaca & Gabriel Rasoi & Constantin Filote, 2018. "Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle," Energies, MDPI, vol. 11(5), pages 1-12, May.
    9. Andyn Omanovic & Norbert Zsiga & Patrik Soltic & Christopher Onder, 2021. "Increased Internal Combustion Engine Efficiency with Optimized Valve Timings in Extended Stroke Operation," Energies, MDPI, vol. 14(10), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1450-:d:112765. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.