IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v202y2024ics1364032124003770.html
   My bibliography  Save this article

Cotton stalk valorization towards bio-based materials, chemicals, and biofuels: A review

Author

Listed:
  • Cai, Chenggu
  • Wang, Zhanbiao
  • Ma, Lei
  • Xu, Zhaoxian
  • Yu, Jianming
  • Li, Fuguang

Abstract

Cotton is an important cash crop because it is the main natural fiber used in the textile industry and provides protein and oil to human and animal diets via cotton seeds. After the cotton fiber and seeds have been harvested, massive amounts of cotton stalk remain, which are typically underutilized and treated by burning or returning them to the field. However, cotton stalk has many valuable characteristics, such as good fiber properties, good mechanical performance, high cellulose content, and high heating value, making it suitable for applications in bio-based materials, chemicals, and biofuel production. In this review, the current knowledge related to these three main groups of value-added products generated from cotton stalk is comprehensively summarized. The results of techno-economic assessments of materials, chemicals, and biofuel production from cotton stalk are discussed. Furthermore, promising strategies to eliminate the main obstacles to cotton stalk valorization, including technological and processing approaches, are proposed. Overall, this review verifies the valorization potential of cotton stalk and provides new ideas for the high-value utilization of other agricultural wastes.

Suggested Citation

  • Cai, Chenggu & Wang, Zhanbiao & Ma, Lei & Xu, Zhaoxian & Yu, Jianming & Li, Fuguang, 2024. "Cotton stalk valorization towards bio-based materials, chemicals, and biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124003770
    DOI: 10.1016/j.rser.2024.114651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124003770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guangxu Yang & Zhenggang Gong & Xiaolin Luo & Lihui Chen & Li Shuai, 2023. "Bonding wood with uncondensed lignins as adhesives," Nature, Nature, vol. 621(7979), pages 511-515, September.
    2. Alauddin, Zainal Alimuddin Bin Zainal & Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2010. "Gasification of lignocellulosic biomass in fluidized beds for renewable energy development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2852-2862, December.
    3. Mousavi-Avval, Seyed Hashem & Sahoo, Kamalakanta & Nepal, Prakash & Runge, Troy & Bergman, Richard, 2023. "Environmental impacts and techno-economic assessments of biobased products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    4. Tian Li & Chaoji Chen & Alexandra H. Brozena & J. Y. Zhu & Lixian Xu & Carlos Driemeier & Jiaqi Dai & Orlando J. Rojas & Akira Isogai & Lars Wågberg & Liangbing Hu, 2021. "Developing fibrillated cellulose as a sustainable technological material," Nature, Nature, vol. 590(7844), pages 47-56, February.
    5. Masum, Md Farhad Hossain & Dwivedi, Puneet & Anderson, William F., 2020. "Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    6. Zhou, Ziyuan & Liu, Dehua & Zhao, Xuebing, 2021. "Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    7. Ruiyu Mi & Chaoji Chen & Tobias Keplinger & Yong Pei & Shuaiming He & Dapeng Liu & Jianguo Li & Jiaqi Dai & Emily Hitz & Bao Yang & Ingo Burgert & Liangbing Hu, 2020. "Scalable aesthetic transparent wood for energy efficient buildings," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    8. Isci, A. & Demirer, G.N., 2007. "Biogas production potential from cotton wastes," Renewable Energy, Elsevier, vol. 32(5), pages 750-757.
    9. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    10. Hamawand, Ihsan & Sandell, Gary & Pittaway, Pam & Chakrabarty, Sayan & Yusaf, Talal & Chen, Guangnan & Seneweera, Saman & Al-Lwayzy, Saddam & Bennett, John & Hopf, Joshua, 2016. "Bioenergy from Cotton Industry Wastes: A review and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 435-448.
    11. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    12. Louw, Jeanne & Dogbe, Eunice S. & Yang, Bin & Görgens, Johann F., 2023. "Prioritisation of biomass-derived products for biorefineries based on economic feasibility: A review on the comparability of techno-economic assessment results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Usmani, Zeba & Sharma, Minaxi & Awasthi, Abhishek Kumar & Lukk, Tiit & Tuohy, Maria G. & Gong, Liang & Nguyen-Tri, Phuong & Goddard, Alan D. & Bill, Roslyn M. & Nayak, S.Chandra & Gupta, Vijai Kumar, 2021. "Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Awasthi, Mukesh Kumar & Sindhu, Raveendran & Sirohi, Ranjna & Kumar, Vinod & Ahluwalia, Vivek & Binod, Parameswaran & Juneja, Ankita & Kumar, Deepak & Yan, Binghua & Sarsaiya, Surendra & Zhang, Zengqi, 2022. "Agricultural waste biorefinery development towards circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, J.Y. & Pan, Xuejun, 2022. "Efficient sugar production from plant biomass: Current status, challenges, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    2. Ding, Kaili & Liu, Dong & Chen, Xueli & Zhang, Hui & Shi, Suan & Guo, Xiaojun & Zhou, Ling & Han, Lujia & Xiao, Weihua, 2024. "Scalable lignocellulosic biorefineries: Technoeconomic review for efficient fermentable sugars production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    3. Zhou, Qiaoqiao & Liu, Zhenyu & Wu, Ta Yeong & Zhang, Lian, 2023. "Furfural from pyrolysis of agroforestry waste: Critical factors for utilisation of C5 and C6 sugars," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    4. Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    6. Nianze Zhang & Chunyan Tian & Peng Fu & Qiaoxia Yuan & Yuchun Zhang & Zhiyu Li & Weiming Yi, 2022. "The Fractionation of Corn Stalk Components by Hydrothermal Treatment Followed by Ultrasonic Ethanol Extraction," Energies, MDPI, vol. 15(7), pages 1-15, April.
    7. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    8. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    9. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    10. Hu, Hangli & Luo, Yanru & Zou, Jianfeng & Zhang, Shukai & Yellezuome, Dominic & Rahman, Md Maksudur & Li, Yingkai & Li, Chong & Cai, Junmeng, 2022. "Exploring aging kinetic mechanisms of bio-oil from biomass pyrolysis based on change in carbonyl content," Renewable Energy, Elsevier, vol. 199(C), pages 782-790.
    11. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    12. Yoonah Jeong & Jae-Sung Kim & Ye-Eun Lee & Dong-Chul Shin & Kwang-Ho Ahn & Jinhong Jung & Kyeong-Ho Kim & Min-Jong Ku & Seung-Mo Kim & Chung-Hwan Jeon & I-Tae Kim, 2023. "Investigation and Optimization of Co-Combustion Efficiency of Food Waste Biochar and Coal," Sustainability, MDPI, vol. 15(19), pages 1-12, October.
    13. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Xiao He & Anthony K. Lau & Shahab Sokhansanj, 2019. "Effect of Moisture on Gas Emissions from Stored Woody Biomass," Energies, MDPI, vol. 13(1), pages 1-14, December.
    16. González, William A. & Pérez, Juan F. & Chapela, Sergio & Porteiro, Jacobo, 2018. "Numerical analysis of wood biomass packing factor in a fixed-bed gasification process," Renewable Energy, Elsevier, vol. 121(C), pages 579-589.
    17. Itxaso Anso & Samira Zouhir & Thibault Géry Sana & Petya Violinova Krasteva, 2024. "Structural basis for synthase activation and cellulose modification in the E. coli Type II Bcs secretion system," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    18. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    19. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    20. Yao, Junwei & Xie, Xiaobao & Shi, Qingshan, 2021. "Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system," Renewable Energy, Elsevier, vol. 177(C), pages 853-858.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:202:y:2024:i:c:s1364032124003770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.