IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1235-d1604477.html
   My bibliography  Save this article

In Search of Optimal Cell Components for Polyoxometalate-Based Redox Flow Batteries: Effect of the Membrane on Cell Performance

Author

Listed:
  • Ángela Barros

    (Surface Chemistry and Nanotechnologies Unit, Tekniker, Iñaki Goenaga 5, 20600 Eibar, Spain
    Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain)

  • Jacobus C. Duburg

    (Electrochemistry Laboratory, Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland)

  • Lorenz Gubler

    (Electrochemistry Laboratory, Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland)

  • Estibaliz Aranzabe

    (Surface Chemistry and Nanotechnologies Unit, Tekniker, Iñaki Goenaga 5, 20600 Eibar, Spain)

  • Beñat Artetxe

    (Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain)

  • Juan Manuel Gutiérrez-Zorrilla

    (Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco UPV/EHU, 48080 Bilbao, Spain)

  • Unai Eletxigerra

    (Surface Chemistry and Nanotechnologies Unit, Tekniker, Iñaki Goenaga 5, 20600 Eibar, Spain)

Abstract

Redox Flow Batteries (RFBs) are promising large-scale Energy Storage Systems, which support the integration of renewable energies into the current electric grid. Emerging chemistries for electrolytes, such as Polyoxometalates (POMs), are being studied. POMs have attracted great interest because of their reversible multi-electron transfers and the possibility of tuning their electrochemical properties. Recently, the cobalt-containing Keggin-type species [CoW 12 O 40 ] 6− ( CoW 12 ) has been successfully implemented in a symmetric RFB, and its further implementation calls for new materials for the membrane to enhance its cell performance. In this work, different types of ion exchange membranes (Nafion™-NR212, FAPQ-330 and Amphion™) were tested. The electrolyte uptake, swelling, conductivity and permeability of the membranes in the CoW 12 electrolyte, as well as a detailed cell performance study, are reported herein. Better performance results ascribed to the robustness, efficiency and energy density of the system were found for Nafion™-NR212, with 88.5% energy efficiency, 98.9% capacity retention and 3.1 Wh L −1 over 100 cycles at 20 mA cm −2 . FAPQ-330 and Amphion membranes showed large capacity fade (up to 0.2%/cycle). Crossover and the low conductivity of these membranes in the mild pH conditions of the electrolyte were revealed to be responsible for the reduced cell performance.

Suggested Citation

  • Ángela Barros & Jacobus C. Duburg & Lorenz Gubler & Estibaliz Aranzabe & Beñat Artetxe & Juan Manuel Gutiérrez-Zorrilla & Unai Eletxigerra, 2025. "In Search of Optimal Cell Components for Polyoxometalate-Based Redox Flow Batteries: Effect of the Membrane on Cell Performance," Energies, MDPI, vol. 18(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1235-:d:1604477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1235/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1235/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeng, L. & Zhao, T.S. & Wei, L. & Jiang, H.R. & Wu, M.C., 2019. "Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges," Applied Energy, Elsevier, vol. 233, pages 622-643.
    2. Fei Ai & Zengyue Wang & Nien-Chu Lai & Qingli Zou & Zhuojian Liang & Yi-Chun Lu, 2022. "Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures," Nature Energy, Nature, vol. 7(5), pages 417-426, May.
    3. Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shujuan Meng & Binyu Xiong & Tuti Mariana Lim, 2019. "Model-Based Condition Monitoring of a Vanadium Redox Flow Battery," Energies, MDPI, vol. 12(15), pages 1-16, August.
    2. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Alejandro Clemente & Ramon Costa-Castelló, 2020. "Redox Flow Batteries: A Literature Review Oriented to Automatic Control," Energies, MDPI, vol. 13(17), pages 1-31, September.
    4. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    5. Iñigo Aramendia & Unai Fernandez-Gamiz & Adrian Martinez-San-Vicente & Ekaitz Zulueta & Jose Manuel Lopez-Guede, 2020. "Vanadium Redox Flow Batteries: A Review Oriented to Fluid-Dynamic Optimization," Energies, MDPI, vol. 14(1), pages 1-20, December.
    6. Nurkhodzha Akbulaev & Tural Abdulhasanov, 2023. "Analyzing the Connection between Energy Prices and Cryptocurrency throughout the Pandemic Period," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 227-234, January.
    7. Manshu Kapoor & Anil Verma, 2022. "Technical benchmarking and challenges of kilowatt scale vanadium redox flow battery," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(5), September.
    8. Liming Chen & Tao Liu & Yimin Zhang & Hong Liu & Muqing Ding & Dong Pan, 2022. "Mitigating Capacity Decay by Adding Carbohydrate in the Negative Electrolyte of Vanadium Redox Flow Battery," Energies, MDPI, vol. 15(7), pages 1-16, March.
    9. Liu, Yongbin & Yu, Lihong & Liu, Le & Xi, Jingyu, 2021. "Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range," Applied Energy, Elsevier, vol. 301(C).
    10. Shi, Yu & Eze, Chika & Xiong, Binyu & He, Weidong & Zhang, Han & Lim, T.M. & Ukil, A. & Zhao, Jiyun, 2019. "Recent development of membrane for vanadium redox flow battery applications: A review," Applied Energy, Elsevier, vol. 238(C), pages 202-224.
    11. Chen, Ying & Liu, Lianchao & Huang, Yue & Cao, Haidong & Liu, Tiantian & Qi, Zhixian & Hu, Jingwen & Guo, Yonggui & Sun, Jianteng & Liang, Maofeng & Wei, Junfu & Zhang, Huan & Zhang, Xiaoqing & Wang, , 2024. "Low-salt organohydrogel electrolytes for wide-potential-window flexible all-solid-state supercapacitors," Applied Energy, Elsevier, vol. 363(C).
    12. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    13. Zhenkang Wang & Haoqing Ji & Jinqiu Zhou & Yiwei Zheng & Jie Liu & Tao Qian & Chenglin Yan, 2023. "Exploiting nonaqueous self-stratified electrolyte systems toward large-scale energy storage," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    14. Robert Bock & Björn Kleinsteinberg & Bjørn Selnes-Volseth & Odne Stokke Burheim, 2021. "A Novel Iron Chloride Red-Ox Concentration Flow Cell Battery (ICFB) Concept; Power and Electrode Optimization," Energies, MDPI, vol. 14(4), pages 1-12, February.
    15. Toja, F. & Perlini, L. & Facchi, D. & Casalegno, A. & Zago, M., 2024. "Dramatic mitigation of capacity decay and volume variation in vanadium redox flow batteries through modified preparation of electrolytes," Applied Energy, Elsevier, vol. 354(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1235-:d:1604477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.