IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1194-d1602583.html
   My bibliography  Save this article

Optimization and Simulation in Biofuel Supply Chain

Author

Listed:
  • Youngjin Kim

    (Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea)

  • Sojung Kim

    (Department of Industrial and Systems Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea)

Abstract

Optimization is a key management science methodology utilizing mathematical techniques to determine optimal solutions to a variety of management challenges. The biofuel production process, comparable to existing supply chain operations, consists of complex interconnected activities among three principal components: farms, distribution networks, and refineries. To effectively manage the complex and large-scale biofuel supply chain network, it is essential to employ optimization methodologies such as linear programming and nonlinear programming. However, existing optimization methods are predominantly systematized for generalized issues such as manufacturing production scheduling and supply chain operations management, thus a systematic guideline indicating which techniques should be employed for specific problems in biofuel production and supply relative to the production and management of new and renewable energy sources is absent. Given the crucial need for a continuous increase in biofuel production and efficient management, optimization methods should be implemented. Accordingly, this study compiles optimization techniques suitable for biofuel supply chain operations through a thorough literature review. Particularly, this study examines methods ranging from conventional linear and nonlinear programming to recently utilized simulation-based optimization techniques, spurred by advancements in computing performance. Consequently, researchers and engineers will be equipped to select and implement suitable optimization methods for various challenges in the biofuel production process.

Suggested Citation

  • Youngjin Kim & Sojung Kim, 2025. "Optimization and Simulation in Biofuel Supply Chain," Energies, MDPI, vol. 18(5), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1194-:d:1602583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grigoroudis, Evangelos & Petridis, Konstantinos & Arabatzis, Garyfallos, 2014. "RDEA: A recursive DEA based algorithm for the optimal design of biomass supply chain networks," Renewable Energy, Elsevier, vol. 71(C), pages 113-122.
    2. Huynh, D. & Ierapetritou, M., 2024. "Biorefinery superstructure optimization under carbon pricing policies using stochastic programming," Applied Energy, Elsevier, vol. 376(PA).
    3. Ibrahim M. Hezam & Fausto Cavallaro & Jyoti Lakshmi & Pratibha Rani & Subhanshu Goyal, 2023. "Biofuel Production Plant Location Selection Using Integrated Picture Fuzzy Weighted Aggregated Sum Product Assessment Framework," Sustainability, MDPI, vol. 15(5), pages 1-19, February.
    4. Sojung Kim & Junyoung Seo & Sumin Kim, 2024. "Machine Learning Technologies in the Supply Chain Management Research of Biodiesel: A Review," Energies, MDPI, vol. 17(6), pages 1-15, March.
    5. Sojung Kim & Yeona Choi & Sumin Kim, 2023. "Simulation Modeling in Supply Chain Management Research of Ethanol: A Review," Energies, MDPI, vol. 16(21), pages 1-13, November.
    6. Bahmani, Pardis & Dehghani Sadrabadi, Mohammad Hossein & Makui, Ahmad & Jafari-Nodoushan, Abbasali, 2024. "An optimization-based design methodology to manage the sustainable biomass-to-biodiesel supply chain under disruptions: A case study," Renewable Energy, Elsevier, vol. 229(C).
    7. Kolton Keith & Krystel K. Castillo-Villar, 2023. "Stochastic Programming Model Integrating Pyrolysis Byproducts in the Design of Bioenergy Supply Chains," Energies, MDPI, vol. 16(10), pages 1-17, May.
    8. Azadeh, Ali & Vafa Arani, Hamed & Dashti, Hossein, 2014. "A stochastic programming approach towards optimization of biofuel supply chain," Energy, Elsevier, vol. 76(C), pages 513-525.
    9. Raghu KC & Mika Aalto & Olli-Jussi Korpinen & Tapio Ranta & Svetlana Proskurina, 2020. "Lifecycle Assessment of Biomass Supply Chain with the Assistance of Agent-Based Modelling," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    10. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    11. Akhtari, Shaghaygh & Sowlati, Taraneh, 2020. "Hybrid optimization-simulation for integrated planning of bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 259(C).
    12. Marcin Rabe & Yuriy Bilan & Katarzyna Widera & László Vasa, 2022. "Application of the Linear Programming Method in the Construction of a Mathematical Model of Optimization Distributed Energy," Energies, MDPI, vol. 15(5), pages 1-15, March.
    13. Jimmy Carvajal & William Sarache & Yasel Costa, 2024. "Economic Justice in the Design of a Sugarcane-Derived Biofuel Supply Chain: A Fair Profit Distribution Approach," Logistics, MDPI, vol. 8(4), pages 1-28, November.
    14. Krystel K. Castillo-Villar, 2014. "Metaheuristic Algorithms Applied to Bioenergy Supply Chain Problems: Theory, Review, Challenges, and Future," Energies, MDPI, vol. 7(11), pages 1-33, November.
    15. Chen, X.P. & Hewitt, N. & Li, Z.T. & Wu, Q.M. & Yuan, Xufeng & Roskilly, Tony, 2017. "Dynamic programming for optimal operation of a biofuel micro CHP-HES system," Applied Energy, Elsevier, vol. 208(C), pages 132-141.
    16. Zhang, Fengli & Johnson, Dana M. & Johnson, Mark A., 2012. "Development of a simulation model of biomass supply chain for biofuel production," Renewable Energy, Elsevier, vol. 44(C), pages 380-391.
    17. Zhang, Fengli & Johnson, Dana & Johnson, Mark & Watkins, David & Froese, Robert & Wang, Jinjiang, 2016. "Decision support system integrating GIS with simulation and optimisation for a biofuel supply chain," Renewable Energy, Elsevier, vol. 85(C), pages 740-748.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    2. De Boeck, Kim & Decouttere, Catherine & Jónasson, Jónas Oddur & Vandaele, Nico, 2022. "Vaccine supply chains in resource-limited settings: Mitigating the impact of rainy season disruptions," European Journal of Operational Research, Elsevier, vol. 301(1), pages 300-317.
    3. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    4. Zhaoyuan He & Paul Turner, 2021. "A Systematic Review on Technologies and Industry 4.0 in the Forest Supply Chain: A Framework Identifying Challenges and Opportunities," Logistics, MDPI, vol. 5(4), pages 1-22, December.
    5. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    6. Joanna Alicja Dyczkowska & Norbert Chamier-Gliszczynski & Waldemar Woźniak & Roman Stryjski, 2024. "Management of the Fuel Supply Chain and Energy Security in Poland," Energies, MDPI, vol. 17(22), pages 1-20, November.
    7. He-Lambert, Lixia & English, Burton C. & Lambert, Dayton M. & Shylo, Oleg & Larson, James A. & Yu, T. Edward & Wilson, Bradly, 2018. "Determining a geographic high resolution supply chain network for a large scale biofuel industry," Applied Energy, Elsevier, vol. 218(C), pages 266-281.
    8. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    9. Arabi, Mahsa & Yaghoubi, Saeed & Tajik, Javad, 2019. "A mathematical model for microalgae-based biobutanol supply chain network design under harvesting and drying uncertainties," Energy, Elsevier, vol. 179(C), pages 1004-1016.
    10. Konstantinos Petridis & Garyfallos Arabatzis & Angelo Sifaleras, 2020. "Mathematical optimization models for fuelwood production," Annals of Operations Research, Springer, vol. 294(1), pages 59-74, November.
    11. Martinez-Valencia, Lina & Garcia-Perez, Manuel & Wolcott, Michael P., 2021. "Supply chain configuration of sustainable aviation fuel: Review, challenges, and pathways for including environmental and social benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    12. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    13. Henrique Piqueiro & Reinaldo Gomes & Romão Santos & Jorge Pinho de Sousa, 2023. "Managing Disruptions in a Biomass Supply Chain: A Decision Support System Based on Simulation/Optimisation," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    14. Nugroho, Yohanes Kristianto & Zhu, Liandong, 2019. "Platforms planning and process optimization for biofuels supply chain," Renewable Energy, Elsevier, vol. 140(C), pages 563-579.
    15. Olli-Jussi Korpinen & Mika Aalto & Raghu KC & Timo Tokola & Tapio Ranta, 2023. "Utilisation of Spatial Data in Energy Biomass Supply Chain Research—A Review," Energies, MDPI, vol. 16(2), pages 1-23, January.
    16. Liu, Wan-Yu & Lin, Chun-Cheng & Yeh, Tzu-Lei, 2017. "Supply chain optimization of forest biomass electricity and bioethanol coproduction," Energy, Elsevier, vol. 139(C), pages 630-645.
    17. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    18. Habib, Muhammad Salman & Hwang, Seung-June, 2024. "Developing sustainable, resilient, and responsive biofuel production and distribution management system: A neutrosophic fuzzy optimization approach based on artificial intelligence and geographic info," Applied Energy, Elsevier, vol. 372(C).
    19. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    20. Ye, Fei & Li, Yina & Lin, Qiang & Zhan, Yuanzhu, 2017. "Modeling of China's cassava-based bioethanol supply chain operation and coordination," Energy, Elsevier, vol. 120(C), pages 217-228.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1194-:d:1602583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.