IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318112.html
   My bibliography  Save this article

Hybrid optimization-simulation for integrated planning of bioenergy and biofuel supply chains

Author

Listed:
  • Akhtari, Shaghaygh
  • Sowlati, Taraneh

Abstract

Traditionally, biomass supply chain planning has been done hierarchically at the strategic, tactical, and operational levels. Hierarchical planning might result in inconsistent or infeasible solutions at lower planning levels because short-term variations, e.g., those in biomass supply and demand, are not considered in long-term plans. To address this issue, an integrated strategic, tactical, and operational plan is developed in this paper in to consider the variations and details of lower planning levels. The integrated plan is developed as a hybrid model based on the recursive optimization-simulation approach. The optimization model integrates the strategic and tactical plans, while the simulation model incorporates the variations at the operational level. A procedure is developed to adjust the plans according to the variations in the model parameters using a feedback mechanism between the operational and the strategic/tactical level plans. The hybrid model is applied to a case study in British Columbia, Canada. The results show that the operational level variations and constraints could affect the long-term investment decisions and their profitability. For the given case study, the operational level variations decreased the estimated net present value by 21% due to the higher demand for logging residues. However, compared with the initial solution considered in the hybrid model, the final solution has a 17% higher net present value. The final design from the hybrid model suggests small-scale bioenergy and biofuel conversion facilities rather than large-scale ones as their demand for biomass could be met using more sawmill residues and less roadside logging residues.

Suggested Citation

  • Akhtari, Shaghaygh & Sowlati, Taraneh, 2020. "Hybrid optimization-simulation for integrated planning of bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318112
    DOI: 10.1016/j.apenergy.2019.114124
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lam, Hon Loong & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2011. "Model-size reduction techniques for large-scale biomass production and supply networks," Energy, Elsevier, vol. 36(8), pages 4599-4608.
    2. Khishtandar, Soheila, 2019. "Simulation based evolutionary algorithms for fuzzy chance-constrained biogas supply chain design," Applied Energy, Elsevier, vol. 236(C), pages 183-195.
    3. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    4. Akhtari, Shaghaygh & Sowlati, Taraneh & Day, Ken, 2014. "The effects of variations in supply accessibility and amount on the economics of using regional forest biomass for generating district heat," Energy, Elsevier, vol. 67(C), pages 631-640.
    5. Mula, Josefa & Peidro, David & Díaz-Madroñero, Manuel & Vicens, Eduardo, 2010. "Mathematical programming models for supply chain production and transport planning," European Journal of Operational Research, Elsevier, vol. 204(3), pages 377-390, August.
    6. Windisch, Johannes & Väätäinen, Kari & Anttila, Perttu & Nivala, Mikko & Laitila, Juha & Asikainen, Antti & Sikanen, Lauri, 2015. "Discrete-event simulation of an information-based raw material allocation process for increasing the efficiency of an energy wood supply chain," Applied Energy, Elsevier, vol. 149(C), pages 315-325.
    7. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    8. Hu, Hao & Lin, Tao & Wang, Shaowen & Rodriguez, Luis F., 2017. "A cyberGIS approach to uncertainty and sensitivity analysis in biomass supply chain optimization," Applied Energy, Elsevier, vol. 203(C), pages 26-40.
    9. Mobini, Mahdi & Sowlati, Taraneh & Sokhansanj, Shahab, 2011. "Forest biomass supply logistics for a power plant using the discrete-event simulation approach," Applied Energy, Elsevier, vol. 88(4), pages 1241-1250, April.
    10. Gunasekaran, A. & Patel, C. & McGaughey, Ronald E., 2004. "A framework for supply chain performance measurement," International Journal of Production Economics, Elsevier, vol. 87(3), pages 333-347, February.
    11. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    12. Sarker, Bhaba R. & Wu, Bingqing & Paudel, Krishna P., 2019. "Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location," Applied Energy, Elsevier, vol. 239(C), pages 343-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    2. Burli, Pralhad H. & Nguyen, Ruby T. & Hartley, Damon S. & Griffel, L. Michael & Vazhnik, Veronika & Lin, Yingqian, 2021. "Farmer characteristics and decision-making: A model for bioenergy crop adoption," Energy, Elsevier, vol. 234(C).
    3. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    4. Zaher Abusaq & Muhammad Salman Habib & Adeel Shehzad & Mohammad Kanan & Ramiz Assaf, 2022. "A Flexible Robust Possibilistic Programming Approach toward Wood Pellets Supply Chain Network Design," Mathematics, MDPI, vol. 10(19), pages 1-27, October.
    5. Santibañez-Aguilar, José Ezequiel & Quiroz-Ramírez, Juan José & Sánchez-Ramírez, Eduardo & Segovia-Hernández, Juan Gabriel & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2022. "Marginalization index as social measure for Acetone-Butanol-Ethanol supply chain planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    7. Henrique Piqueiro & Reinaldo Gomes & Romão Santos & Jorge Pinho de Sousa, 2023. "Managing Disruptions in a Biomass Supply Chain: A Decision Support System Based on Simulation/Optimisation," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    8. Hong, Jae-Dong & Mwakalonge, Judith L., 2020. "Biofuel logistics network scheme design with combined data envelopment analysis approach," Energy, Elsevier, vol. 209(C).
    9. Yunusoglu, Pinar & Ozsoydan, Fehmi Burcin & Bilgen, Bilge, 2024. "A machine learning-based two-stage approach for the location of undesirable facilities in the biomass-to-bioenergy supply chain," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    2. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    3. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    4. Prinz, Robert & Väätäinen, Kari & Laitila, Juha & Sikanen, Lauri & Asikainen, Antti, 2019. "Analysis of energy efficiency of forest chip supply systems using discrete-event simulation," Applied Energy, Elsevier, vol. 235(C), pages 1369-1380.
    5. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    6. Luo, Li & O'Hehir, Jim & Regan, Courtney M. & Meng, Li & Connor, Jeffery D. & Chow, Christopher W.K., 2021. "An integrated strategic and tactical optimization model for forest supply chain planning," Forest Policy and Economics, Elsevier, vol. 131(C).
    7. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    8. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    9. Maung, Thein A. & Gustafson, Cole R. & Saxowsky, David M. & Nowatzki, John & Miljkovic, Tatjana & Ripplinger, David, 2013. "The logistics of supplying single vs. multi-crop cellulosic feedstocks to a biorefinery in southeast North Dakota," Applied Energy, Elsevier, vol. 109(C), pages 229-238.
    10. Sadeghi Darvazeh, Saeed & Mansoori Mooseloo, Farzaneh & Gholian-Jouybari, Fatemeh & Amiri, Maghsoud & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Data-driven robust optimization to design an integrated sustainable forest biomass-to-electricity network under disjunctive uncertainties," Applied Energy, Elsevier, vol. 356(C).
    11. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    12. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    13. Eliasson, Lars & Eriksson, Anders & Mohtashami, Sima, 2017. "Analysis of factors affecting productivity and costs for a high-performance chip supply system," Applied Energy, Elsevier, vol. 185(P1), pages 497-505.
    14. Juha Laitila & Robert Prinz & Lauri Sikanen, 2019. "Selection of a chipper technology for small-scale operations - a Finnish case," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 65(4), pages 121-133.
    15. Schuster Puga, Matías & Minner, Stefan & Tancrez, Jean-Sébastien, 2019. "Two-stage supply chain design with safety stock placement decisions," International Journal of Production Economics, Elsevier, vol. 209(C), pages 183-193.
    16. Zhang, Fengli & Johnson, Dana M. & Wang, Jinjiang, 2016. "Integrating multimodal transport into forest-delivered biofuel supply chain design," Renewable Energy, Elsevier, vol. 93(C), pages 58-67.
    17. Osmani, Atif & Zhang, Jun & Gonela, Vinay & Awudu, Iddrisu, 2013. "Electricity generation from renewables in the United States: Resource potential, current usage, technical status, challenges, strategies, policies, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 454-472.
    18. Osmani, Atif & Zhang, Jun, 2014. "Economic and environmental optimization of a large scale sustainable dual feedstock lignocellulosic-based bioethanol supply chain in a stochastic environment," Applied Energy, Elsevier, vol. 114(C), pages 572-587.
    19. Mohammad Kanan & Muhammad Salman Habib & Tufail Habib & Sadaf Zahoor & Anas Gulzar & Hamid Raza & Zaher Abusaq, 2022. "A Flexible Robust Possibilistic Programming Approach for Sustainable Second-Generation Biogas Supply Chain Design under Multiple Uncertainties," Sustainability, MDPI, vol. 14(18), pages 1-32, September.
    20. Abbas, Shahbaz & Chiang Hsieh, Lin-Han & Techato, Kuaanan, 2021. "Supply chain integrated decision model in order to synergize the energy system of textile industry from its resource waste," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.