IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipas0306261924016660.html
   My bibliography  Save this article

Biorefinery superstructure optimization under carbon pricing policies using stochastic programming

Author

Listed:
  • Huynh, D.
  • Ierapetritou, M.

Abstract

The growing utilization of biomass feedstocks for climate change mitigation has led to increased research on biorefineries. Concurrently, environmental policies are evolving as crucial tools to address these global concerns. Cap-and-trade, carbon tax, and carbon cap policies have been established to reduce carbon dioxide emissions. In this work, a mathematical optimization model is developed to integrate biorefinery process design with carbon pricing policies and crediting mechanisms. A two-stage stochastic mixed integer linear programming model is proposed to account for emissions, feedstock supply, chemical demand, and pricing uncertainties. A bi-objective optimization framework is employed to consider economic and environmental metrics. The framework is a valuable tool for governments and businesses to determine pareto-optimal investment strategies under environmental policies. It is applicable for evaluating prospective chemical technologies with carbon pricing policies beyond biorefineries. The results indicate that carbon crediting mechanisms can minimize the financial penalty by up to 50% under a carbon tax policy. Implementing chemical demand constraints within a cap-and-trade policy reduces potential profits, especially when the carbon prices are high. The stochastic programming approach revealed that underestimating the expected carbon cap leads to lower expected profits. Despite the financial implications of these policies, profitable process designs are achievable.

Suggested Citation

  • Huynh, D. & Ierapetritou, M., 2024. "Biorefinery superstructure optimization under carbon pricing policies using stochastic programming," Applied Energy, Elsevier, vol. 376(PA).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016660
    DOI: 10.1016/j.apenergy.2024.124283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Golecha, Rajdeep & Gan, Jianbang, 2016. "Effects of corn stover year-to-year supply variability and market structure on biomass utilization and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 34-44.
    2. Munguía-López, Aurora del Carmen & González-Bravo, Ramón & Ponce-Ortega, José María, 2019. "Evaluation of carbon and water policies in the optimization of water distribution networks involving power-desalination plants," Applied Energy, Elsevier, vol. 236(C), pages 927-936.
    3. David Popp, 2019. "Environmental Policy and Innovation: A Decade of Research," NBER Working Papers 25631, National Bureau of Economic Research, Inc.
    4. Yunqing Zhu & Charles Romain & Charlotte K. Williams, 2016. "Sustainable polymers from renewable resources," Nature, Nature, vol. 540(7633), pages 354-362, December.
    5. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    6. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Bi-objective optimization of biomass supply chains considering carbon pricing policies," Applied Energy, Elsevier, vol. 264(C).
    7. Geissler, Caleb H. & Maravelias, Christos T., 2021. "Economic, energetic, and environmental analysis of lignocellulosic biorefineries with carbon capture," Applied Energy, Elsevier, vol. 302(C).
    8. David Popp, 2019. "Environmental policy and innovation: a decade of research," CESifo Working Paper Series 7544, CESifo.
    9. Awudu, Iddrisu & Zhang, Jun, 2013. "Stochastic production planning for a biofuel supply chain under demand and price uncertainties," Applied Energy, Elsevier, vol. 103(C), pages 189-196.
    10. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    11. Popp, David, 2019. "Environmental Policy and Innovation: A Decade of Research," International Review of Environmental and Resource Economics, now publishers, vol. 13(3-4), pages 265-337, September.
    12. Martelli, Emanuele & Freschini, Marco & Zatti, Matteo, 2020. "Optimization of renewable energy subsidy and carbon tax for multi energy systems using bilevel programming," Applied Energy, Elsevier, vol. 267(C).
    13. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.
    14. Annie Levasseur & Pascal Lesage & Manuele Margni & Réjean Samson, 2013. "Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(1), pages 117-128, February.
    15. Liu, Xianbing & Fan, Yongbin & Wang, Can, 2017. "An estimation of the effect of carbon pricing for CO2 mitigation in China’s cement industry," Applied Energy, Elsevier, vol. 185(P1), pages 671-686.
    16. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    17. Rizwan, Muhammad & Lee, Jay H. & Gani, Rafiqul, 2015. "Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges," Applied Energy, Elsevier, vol. 150(C), pages 69-79.
    18. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    19. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Impact of carbon pricing policies on the cost and emission of the biomass supply chain: Optimization models and a case study," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    2. Roy Kouwenberg & Chenglong Zheng, 2023. "A Review of the Global Climate Finance Literature," Sustainability, MDPI, vol. 15(2), pages 1-32, January.
    3. Michael Peneder & Spyros Arvanitis & Christian Rammer & Tobias Stucki & Martin Wörter, 2022. "Policy instruments and self-reported impacts of the adoption of energy saving technologies in the DACH region," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(2), pages 369-404, May.
    4. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    5. David Popp & Jacquelyn Pless & Ivan Haščič & Nick Johnstone, 2020. "Innovation and Entrepreneurship in the Energy Sector," NBER Chapters, in: The Role of Innovation and Entrepreneurship in Economic Growth, pages 175-248, National Bureau of Economic Research, Inc.
    6. Rik L. Rozendaal & Herman R. J. Vollebergh, 2021. "Policy-Induced Innovation in Clean Technologies: Evidence from the Car Market," CESifo Working Paper Series 9422, CESifo.
    7. Stern, Nicholas & Sivropoulos-Valero, Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," LSE Research Online Documents on Economics 114385, London School of Economics and Political Science, LSE Library.
    8. Denisa Szabo & Mihai Dragomir & Mihail Țîțu & Diana Dragomir & Sorin Popescu & Silvia Tofană, 2023. "Sustainable Low-Carbon Production: From Strategy to Reality," Sustainability, MDPI, vol. 15(11), pages 1-16, May.
    9. Jingbo Cui & Zhenxuan Wang & Haishan Yu, 2022. "Can International Climate Cooperation Induce Knowledge Spillover to Developing Countries? Evidence from CDM," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(4), pages 923-951, August.
    10. Antoine Dechezlepretre & Sam Fankhauser & Matthieu Glachant & Jan Stoever & Simon Touboul, 2020. "Invention and Global Diffusion of Technologies for Climate Change Adaptation," World Bank Publications - Reports 33883, The World Bank Group.
    11. Nicholas Stern & Anna Valero, 2021. "Innovation, growth and the transition to net-zero emissions," CEP Discussion Papers dp1773, Centre for Economic Performance, LSE.
    12. Liu, Hongxun & Gao, Jinfeng & Tian, Peng & Ma, Xiaoming & Meng, Guanfei & Yang, Jingnan & Li, Zhi, 2023. "The impact of environmental regulation on productivity with co-production of goods and bads," Energy Economics, Elsevier, vol. 125(C).
    13. Filippo Maria D’Arcangelo & Ilai Levin & Alessia Pagani & Mauro Pisu & Åsa Johansson, 2022. "A framework to decarbonise the economy," OECD Economic Policy Papers 31, OECD Publishing.
    14. Wang, Nan & Akimoto, Keigo & Nemet, Gregory F., 2021. "What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects," Energy Policy, Elsevier, vol. 158(C).
    15. repec:ecb:ecbdps:202219 is not listed on IDEAS
    16. David Popp & Francesco Vona & Myriam Grégoire-Zawilski & Giovanni Marin, 2024. "The Next Wave of Energy Innovation: Which Technologies? Which Skills?," Review of Environmental Economics and Policy, University of Chicago Press, vol. 18(1), pages 45-65.
    17. Gianluca Biggi & Martina Iori & Julia Mazzei & Andrea Mina, 2024. "Green Intelligence: The AI content of green technologies," LEM Papers Series 2024/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    18. Katinka Holtsmark & Katinka Kristine Holtsmark, 2024. "Can Revenue Recycling Kill Green Technology?," CESifo Working Paper Series 11510, CESifo.
    19. Gugler, Klaus & Szücs, Florian & Wiedenhofer, Thomas, 2024. "Environmental Policies and directed technological change," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    20. Hötte, Kerstin & Pichler, Anton & Lafond, François, 2021. "The rise of science in low-carbon energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    21. Lei Li & Xiaoyu Ma & Shaojun Ma & Feng Gao, 2024. "Role of green finance in regional heterogeneous green innovation: Evidence from China," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pa:s0306261924016660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.