IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1019-d1343280.html
   My bibliography  Save this article

Lithium-Ion Batteries on Board: A Review on Their Integration for Enabling the Energy Transition in Shipping Industry

Author

Listed:
  • Giovanni Lucà Trombetta

    (Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Via S. Lucia Sopra Contesse, 5, 98126 Messina, Italy)

  • Salvatore Gianluca Leonardi

    (Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Via S. Lucia Sopra Contesse, 5, 98126 Messina, Italy)

  • Davide Aloisio

    (Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Via S. Lucia Sopra Contesse, 5, 98126 Messina, Italy)

  • Laura Andaloro

    (Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Via S. Lucia Sopra Contesse, 5, 98126 Messina, Italy)

  • Francesco Sergi

    (Consiglio Nazionale delle Ricerche, Istituto di Tecnologie Avanzate per l’Energia “Nicola Giordano”, Via S. Lucia Sopra Contesse, 5, 98126 Messina, Italy)

Abstract

The emission reductions mandated by International Maritime Regulations present an opportunity to implement full electric and hybrid vessels using large-scale battery energy storage systems (BESSs). lithium-ionion batteries (LIB), due to their high power and specific energy, which allows for scalability and adaptability to large transportation systems, are currently the most widely used electrochemical storage system. Hence, BESSs are the focus of this review proposing a comprehensive discussion on the commercial LIB chemistries that are currently available for marine applications and their potential role in ship services. This work outlines key elements that are necessary for designing a BESS for ships, including an overview of the regulatory framework for large-scale onboard LIB installations. The basic technical information about system integration has been summarized from various research projects, white papers, and test cases mentioned in available studies. The aim is to provide state-of-the-art information about the installation of BESSs on ships, in accordance with the latest applicable rules for ships. The goal of this study is to facilitate and promote the widespread use of batteries in the marine industry.

Suggested Citation

  • Giovanni Lucà Trombetta & Salvatore Gianluca Leonardi & Davide Aloisio & Laura Andaloro & Francesco Sergi, 2024. "Lithium-Ion Batteries on Board: A Review on Their Integration for Enabling the Energy Transition in Shipping Industry," Energies, MDPI, vol. 17(5), pages 1-37, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1019-:d:1343280
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J.-M. Tarascon & M. Armand, 2001. "Issues and challenges facing rechargeable lithium batteries," Nature, Nature, vol. 414(6861), pages 359-367, November.
    2. Marcin Kolodziejski & Iwona Michalska-Pozoga, 2023. "Battery Energy Storage Systems in Ships’ Hybrid/Electric Propulsion Systems," Energies, MDPI, vol. 16(3), pages 1-24, January.
    3. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Planakis, Nikolaos & Papalambrou, George & Kyrtatos, Nikolaos, 2022. "Ship energy management system development and experimental evaluation utilizing marine loading cycles based on machine learning techniques," Applied Energy, Elsevier, vol. 307(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Wang, Huan & Li, Yan-Fu & Zhang, Ying, 2023. "Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Zhang, Chao & Wei, Yi-Li & Cao, Peng-Fei & Lin, Meng-Chang, 2018. "Energy storage system: Current studies on batteries and power condition system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3091-3106.
    4. Ziheng Zhang & Maxim Avdeev & Huaican Chen & Wen Yin & Wang Hay Kan & Guang He, 2022. "Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Zhi Chang & Huijun Yang & Xingyu Zhu & Ping He & Haoshen Zhou, 2022. "A stable quasi-solid electrolyte improves the safe operation of highly efficient lithium-metal pouch cells in harsh environments," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Matthew Sadd & Shizhao Xiong & Jacob R. Bowen & Federica Marone & Aleksandar Matic, 2023. "Investigating microstructure evolution of lithium metal during plating and stripping via operando X-ray tomographic microscopy," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Sun, Xiaojun & Yao, Chong & Song, Enzhe & Yang, Qidong & Yang, Xuchang, 2022. "Optimal control of transient processes in marine hybrid propulsion systems: Modeling, optimization and performance enhancement," Applied Energy, Elsevier, vol. 321(C).
    8. Yanjie Yi & Jingshun Zhuang & Chao Liu & Lirong Lei & Shuaiming He & Yi Hou, 2022. "Emerging Lignin-Based Materials in Electrochemical Energy Systems," Energies, MDPI, vol. 15(24), pages 1-22, December.
    9. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Guanjun Ji & Di Tang & Junxiong Wang & Zheng Liang & Haocheng Ji & Jun Ma & Zhaofeng Zhuang & Song Liu & Guangmin Zhou & Hui-Ming Cheng, 2024. "Sustainable upcycling of mixed spent cathodes to a high-voltage polyanionic cathode material," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Shenxiang Zhang & Xian Wei & Xue Cao & Meiwen Peng & Min Wang & Lin Jiang & Jian Jin, 2024. "Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    13. Chao Wang & Ming Liu & Michel Thijs & Frans G. B. Ooms & Swapna Ganapathy & Marnix Wagemaker, 2021. "High dielectric barium titanate porous scaffold for efficient Li metal cycling in anode-free cells," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Ma, Mina & Li, Xiaoyu & Gao, Wei & Sun, Jinhua & Wang, Qingsong & Mi, Chris, 2022. "Multi-fault diagnosis for series-connected lithium-ion battery pack with reconstruction-based contribution based on parallel PCA-KPCA," Applied Energy, Elsevier, vol. 324(C).
    15. Liao, Xiaolin & Sun, Peiyi & Xu, Mengqing & Xing, Lidan & Liao, Youhao & Zhang, Liping & Yu, Le & Fan, Weizhen & Li, Weishan, 2016. "Application of tris(trimethylsilyl)borate to suppress self-discharge of layered nickel cobalt manganese oxide for high energy battery," Applied Energy, Elsevier, vol. 175(C), pages 505-511.
    16. Irina Stenina & Ruslan Shaydullin & Tatiana Kulova & Anna Kuz’mina & Nataliya Tabachkova & Andrey Yaroslavtsev, 2020. "Effect of Carbon Additives on the Electrochemical Performance of Li 4 Ti 5 O 12 /C Anodes," Energies, MDPI, vol. 13(15), pages 1-15, August.
    17. Park, Chybyung & Jeong, Byongug & Zhou, Peilin, 2022. "Lifecycle energy solution of the electric propulsion ship with Live-Life cycle assessment for clean maritime economy," Applied Energy, Elsevier, vol. 328(C).
    18. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    19. Abdulrahman S. Binfaris & Alexander G. Zestos & Jandro L. Abot, 2023. "Development of Carbon Nanotube Yarn Supercapacitors and Energy Storage for Integrated Structural Health Monitoring," Energies, MDPI, vol. 16(15), pages 1-14, August.
    20. Wang, Zhenpo & Hong, Jichao & Liu, Peng & Zhang, Lei, 2017. "Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles," Applied Energy, Elsevier, vol. 196(C), pages 289-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1019-:d:1343280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.