IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1158-d1600620.html
   My bibliography  Save this article

Wind Turbine Fault Diagnosis with Imbalanced SCADA Data Using Generative Adversarial Networks

Author

Listed:
  • Hong Wang

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

  • Taikun Li

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

  • Mingyang Xie

    (HBIS Company Limited Chengde Branch, Chengde 067000, China)

  • Wenfang Tian

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

  • Wei Han

    (School of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, China)

Abstract

Wind turbine fault diagnostics is essential for enhancing turbine performance and lowering maintenance expenses. Supervisory control and data acquisition (SCADA) systems have been extensively recognized as a feasible technology for the realization of wind turbine fault diagnosis tasks due to their capacity to generate vast volumes of operation data. However, wind turbines generally operate normally, and fault data are rare or even impossible to collect. This makes the SCADA data distribution imbalanced, with significantly more normal data than abnormal data, resulting in a decrease in the performance of existing fault diagnosis techniques. This article presents an innovative deep learning-based fault diagnosis method to solve the SCADA data imbalance issue. First, a data generation module centered on generative adversarial networks is designed to create a balanced dataset. Specifically, the long short-term memory network that can handle time series data well is used in the generator network to learn the temporal correlations from SCADA data and thus generate samples with temporal dependencies. Meanwhile, the convolutional neural network (CNN), which has powerful feature learning and representation capabilities, is employed in the discriminator network to automatically capture data features and achieve sample authenticity discrimination. Then, another CNN is trained to perform fault classification using the augmented balanced dataset. The proposed approach is verified utilizing actual SCADA data derived from a wind farm. The comparative experiments show the presented approach is effective in diagnosing wind turbine faults.

Suggested Citation

  • Hong Wang & Taikun Li & Mingyang Xie & Wenfang Tian & Wei Han, 2025. "Wind Turbine Fault Diagnosis with Imbalanced SCADA Data Using Generative Adversarial Networks," Energies, MDPI, vol. 18(5), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1158-:d:1600620
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    2. Guo, Zhen & Pu, Ziqiang & Du, Wenliao & Wang, Hongcao & Li, Chuan, 2022. "Improved adversarial learning for fault feature generation of wind turbine gearbox," Renewable Energy, Elsevier, vol. 185(C), pages 255-266.
    3. Rahimilarki, Reihane & Gao, Zhiwei & Jin, Nanlin & Zhang, Aihua, 2022. "Convolutional neural network fault classification based on time-series analysis for benchmark wind turbine machine," Renewable Energy, Elsevier, vol. 185(C), pages 916-931.
    4. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    5. Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
    6. Sun, Shilin & Wang, Tianyang & Yang, Hongxing & Chu, Fulei, 2022. "Damage identification of wind turbine blades using an adaptive method for compressive beamforming based on the generalized minimax-concave penalty function," Renewable Energy, Elsevier, vol. 181(C), pages 59-70.
    7. Yi, Cancan & Yu, Zhaohong & Lv, Yong & Xiao, Han, 2020. "Reassigned second-order Synchrosqueezing Transform and its application to wind turbine fault diagnosis," Renewable Energy, Elsevier, vol. 161(C), pages 736-749.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
    2. Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Richmond, M. & Sobey, A. & Pandit, R. & Kolios, A., 2020. "Stochastic assessment of aerodynamics within offshore wind farms based on machine-learning," Renewable Energy, Elsevier, vol. 161(C), pages 650-661.
    4. Wenjie Wang & Yu Xue & Chengkuan He & Yongnian Zhao, 2022. "Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades," Energies, MDPI, vol. 15(15), pages 1-31, August.
    5. Arturo Y. Jaen-Cuellar & David A. Elvira-Ortiz & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Advances in Fault Condition Monitoring for Solar Photovoltaic and Wind Turbine Energy Generation: A Review," Energies, MDPI, vol. 15(15), pages 1-36, July.
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    8. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    10. Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
    11. Wang, Han & Zhang, Ning & Du, Ershun & Yan, Jie & Han, Shuang & Li, Nan & Li, Hongxia & Liu, Yongqian, 2023. "An adaptive identification method of abnormal data in wind and solar power stations," Renewable Energy, Elsevier, vol. 208(C), pages 76-93.
    12. Konstantina Fotiadou & Terpsichori Helen Velivassaki & Artemis Voulkidis & Dimitrios Skias & Corrado De Santis & Theodore Zahariadis, 2020. "Proactive Critical Energy Infrastructure Protection via Deep Feature Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
    13. Zhu, Dongping & Huang, Xiaogang & Ding, Zhixia & Zhang, Wei, 2024. "Estimation of wind turbine responses with attention-based neural network incorporating environmental uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Sara C. Pryor & Jacob J. Coburn & Rebecca J. Barthelmie, 2025. "Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion," Energies, MDPI, vol. 18(2), pages 1-22, January.
    15. Wang, Ziqi & Liu, Changliang & Yan, Feng, 2022. "Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique," Renewable Energy, Elsevier, vol. 184(C), pages 343-360.
    16. Changzhi Li & Dandan Liu & Mao Wang & Hanlin Wang & Shuai Xu, 2023. "Detection of Outliers in Time Series Power Data Based on Prediction Errors," Energies, MDPI, vol. 16(2), pages 1-19, January.
    17. Xiaoxun, Zhu & Xinyu, Hang & Xiaoxia, Gao & Xing, Yang & Zixu, Xu & Yu, Wang & Huaxin, Liu, 2022. "Research on crack detection method of wind turbine blade based on a deep learning method," Applied Energy, Elsevier, vol. 328(C).
    18. Liu, Dongdong & Cui, Lingli & Cheng, Weidong, 2023. "Fault diagnosis of wind turbines under nonstationary conditions based on a novel tacho-less generalized demodulation," Renewable Energy, Elsevier, vol. 206(C), pages 645-657.
    19. Dhibi, Khaled & Mansouri, Majdi & Bouzrara, Kais & Nounou, Hazem & Nounou, Mohamed, 2022. "Reduced neural network based ensemble approach for fault detection and diagnosis of wind energy converter systems," Renewable Energy, Elsevier, vol. 194(C), pages 778-787.
    20. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1158-:d:1600620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.