IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp343-360.html
   My bibliography  Save this article

Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique

Author

Listed:
  • Wang, Ziqi
  • Liu, Changliang
  • Yan, Feng

Abstract

With the development of wind turbine (WT) operation and maintenance technologies, the condition monitoring (CM) method based on the data of supervisory control and data acquisition (SCADA) systems has become one of the most popular and cheapest ways to detect the anomalies. As the operation condition of WT will change over time, it is necessary to real-time update the CM model with little manual maintenance to ensure its long-term performance. Therefore, a SCADA data-driven WTCM method based on incremental learning and multivariate state estimation technique (MSET) is proposed. Firstly, for the memory matrix (MM) of MSET, a similarity-based sample selection method is proposed, which is simpler and more effective than the previous method. Secondly, based on the proposed sample selection method, an incremental learning strategy for MSET is proposed, which can add the normal new data in MM and remove the redundant data in real-time. Aiming at the slow computation speed caused by the large MM, a dynamic down-sampling method is proposed, which makes only half of the data participate in the real-time computation and can reduce the computation time by at least 80%. About three years SCADA data of two different types of WTs are used to verify the proposed method. The experimental results show that the incremental MSET can maintain higher estimation accuracy and lower false alarm rate in long-term operation, and can detect the potential gearbox faults hours to weeks in advance.

Suggested Citation

  • Wang, Ziqi & Liu, Changliang & Yan, Feng, 2022. "Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique," Renewable Energy, Elsevier, vol. 184(C), pages 343-360.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:343-360
    DOI: 10.1016/j.renene.2021.11.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121016542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.11.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fuentes, R. & Dwyer-Joyce, R.S. & Marshall, M.B. & Wheals, J. & Cross, E.J., 2020. "Detection of sub-surface damage in wind turbine bearings using acoustic emissions and probabilistic modelling," Renewable Energy, Elsevier, vol. 147(P1), pages 776-797.
    2. Kerman López de Calle & Susana Ferreiro & Constantino Roldán-Paraponiaris & Alain Ulazia, 2019. "A Context-Aware Oil Debris-Based Health Indicator for Wind Turbine Gearbox Condition Monitoring," Energies, MDPI, vol. 12(17), pages 1-19, September.
    3. Le Zhang & Qiang Yang, 2020. "Investigation of the Design and Fault Prediction Method for an Abrasive Particle Sensor Used in Wind Turbine Gearbox," Energies, MDPI, vol. 13(2), pages 1-13, January.
    4. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    5. Minh-Quang Tran & Yi-Chen Li & Chen-Yang Lan & Meng-Kun Liu, 2020. "Wind Farm Fault Detection by Monitoring Wind Speed in the Wake Region," Energies, MDPI, vol. 13(24), pages 1-16, December.
    6. Qiu, Yingning & Feng, Yanhui & Infield, David, 2020. "Fault diagnosis of wind turbine with SCADA alarms based multidimensional information processing method," Renewable Energy, Elsevier, vol. 145(C), pages 1923-1931.
    7. Nengxiang Ling & Shuyu Meng & Philippe Vieu, 2019. "Uniform consistency rate of kNN regression estimation for functional time series data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 451-468, April.
    8. Chen, Bin & Yu, Songhao & Yu, Yang & Zhou, Yilin, 2020. "Acoustical damage detection of wind turbine blade using the improved incremental support vector data description," Renewable Energy, Elsevier, vol. 156(C), pages 548-557.
    9. Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    10. Conor McKinnon & Alan Turnbull & Sofia Koukoura & James Carroll & Alasdair McDonald, 2020. "Effect of Time History on Normal Behaviour Modelling Using SCADA Data to Predict Wind Turbine Failures," Energies, MDPI, vol. 13(18), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bai, Xinjian & Han, Shuang & Kang, Zijian & Tao, Tao & Pang, Cong & Dai, Shixian & Liu, Yongqian, 2024. "Wind turbine gearbox oil temperature feature extraction and condition monitoring based on energy flow," Applied Energy, Elsevier, vol. 371(C).
    2. Wang, Anqi & Pei, Yan & Zhu, Yunyi & Qian, Zheng, 2023. "Wind turbine fault detection and identification through self-attention-based mechanism embedded with a multivariable query pattern," Renewable Energy, Elsevier, vol. 211(C), pages 918-937.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bruce Stephen, 2022. "Machine Learning Applications in Power System Condition Monitoring," Energies, MDPI, vol. 15(5), pages 1-2, March.
    2. Junshuai Yan & Yongqian Liu & Xiaoying Ren, 2023. "An Early Fault Detection Method for Wind Turbine Main Bearings Based on Self-Attention GRU Network and Binary Segmentation Changepoint Detection Algorithm," Energies, MDPI, vol. 16(10), pages 1-23, May.
    3. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2023. "A multi-learner neural network approach to wind turbine fault diagnosis with imbalanced data," Renewable Energy, Elsevier, vol. 208(C), pages 420-430.
    4. Huifan Zeng & Juchuan Dai & Chengming Zuo & Huanguo Chen & Mimi Li & Fan Zhang, 2022. "Correlation Investigation of Wind Turbine Multiple Operating Parameters Based on SCADA Data," Energies, MDPI, vol. 15(14), pages 1-24, July.
    5. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    6. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    7. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    8. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
    10. Luo, Kai & Chen, Liang & Liang, Wei, 2022. "Structural health monitoring of carbon fiber reinforced polymer composite laminates for offshore wind turbine blades based on dual maximum correlation coefficient method," Renewable Energy, Elsevier, vol. 201(P1), pages 1163-1175.
    11. Wang, Han & Zhang, Ning & Du, Ershun & Yan, Jie & Han, Shuang & Li, Nan & Li, Hongxia & Liu, Yongqian, 2023. "An adaptive identification method of abnormal data in wind and solar power stations," Renewable Energy, Elsevier, vol. 208(C), pages 76-93.
    12. Dao, Phong B. & Barszcz, Tomasz & Staszewski, Wieslaw J., 2024. "Anomaly detection of wind turbines based on stationarity analysis of SCADA data," Renewable Energy, Elsevier, vol. 232(C).
    13. Valentin Belopukhov & Andrey Blinov & Sergey Borovik & Mariya Luchsheva & Farit Muhutdinov & Petr Podlipnov & Aleksey Sazhenkov & Yuriy Sekisov, 2022. "Monitoring Metal Wear Particles of Friction Pairs in the Oil Systems of Gas Turbine Power Plants," Energies, MDPI, vol. 15(13), pages 1-15, July.
    14. Wenbin Du & You Wu & Yunliang Zhang & Ya Gao, 2022. "The Impact Effect of Coal Price Fluctuations on China’s Agricultural Product Price," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    15. Mona A. S. Ali & Fathimathul Rajeena P. P. & Diaa Salama Abd Elminaam, 2022. "An Efficient Heap Based Optimizer Algorithm for Feature Selection," Mathematics, MDPI, vol. 10(14), pages 1-33, July.
    16. Junshuai Yan & Yongqian Liu & Xiaoying Ren & Li Li, 2023. "Wind Turbine Gearbox Condition Monitoring Using Hybrid Attentions and Spatio-Temporal BiConvLSTM Network," Energies, MDPI, vol. 16(19), pages 1-22, September.
    17. Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
    18. Kenneth E. Okedu & S. M. Muyeen, 2022. "Comparative Performance of DFIG and PMSG Wind Turbines during Transient State in Weak and Strong Grid Conditions Considering Series Dynamic Braking Resistor," Energies, MDPI, vol. 15(23), pages 1-22, December.
    19. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    20. Han Peng & Songyin Li & Linjian Shangguan & Yisa Fan & Hai Zhang, 2023. "Analysis of Wind Turbine Equipment Failure and Intelligent Operation and Maintenance Research," Sustainability, MDPI, vol. 15(10), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:343-360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.