Detection of Outliers in Time Series Power Data Based on Prediction Errors
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yong Sun & Huakun Que & Qianqian Cai & Jingming Zhao & Jingru Li & Zhengmin Kong & Shuai Wang, 2022. "Borderline SMOTE Algorithm and Feature Selection-Based Network Anomalies Detection Strategy," Energies, MDPI, vol. 15(13), pages 1-13, June.
- Grzegorz Dudek, 2022. "A Comprehensive Study of Random Forest for Short-Term Load Forecasting," Energies, MDPI, vol. 15(20), pages 1-19, October.
- Gustavo Felipe Martin Nascimento & Frédéric Wurtz & Patrick Kuo-Peng & Benoit Delinchant & Nelson Jhoe Batistela, 2021. "Outlier Detection in Buildings’ Power Consumption Data Using Forecast Error," Energies, MDPI, vol. 14(24), pages 1-15, December.
- Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
- Yuanying Chi & Yangyi Zhang & Guozheng Li & Yongke Yuan, 2022. "Prediction Method of Beijing Electric-Energy Substitution Potential Based on a Grid-Search Support Vector Machine," Energies, MDPI, vol. 15(11), pages 1-11, May.
- Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
- Lijun Zhang & Kai Liu & Yufeng Wang & Zachary Bosire Omariba, 2018. "Ice Detection Model of Wind Turbine Blades Based on Random Forest Classifier," Energies, MDPI, vol. 11(10), pages 1-15, September.
- Yiqi Lu & Yongpan Li & Da Xie & Enwei Wei & Xianlu Bao & Huafeng Chen & Xiancheng Zhong, 2018. "The Application of Improved Random Forest Algorithm on the Prediction of Electric Vehicle Charging Load," Energies, MDPI, vol. 11(11), pages 1-16, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
- Neilson Luniere Vilaça & Marly Guimarães Fernandes Costa & Cicero Ferreira Fernandes Costa Filho, 2023. "A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm," Energies, MDPI, vol. 16(8), pages 1-14, April.
- Tej Bahadur Shahi & Chiranjibi Sitaula & Arjun Neupane & William Guo, 2022. "Fruit classification using attention-based MobileNetV2 for industrial applications," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-21, February.
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
- Harsimrat Kaeley & Ye QIAO & Nader BAGHERZADEH, 0000. "Support for Stock Trend Prediction Using Transformers and Sentiment Analysis," Proceedings of Economics and Finance Conferences 13815878, International Institute of Social and Economic Sciences.
- Wang, Zixuan & Qin, Bo & Sun, Haiyue & Zhang, Jian & Butala, Mark D. & Demartino, Cristoforo & Peng, Peng & Wang, Hongwei, 2023. "An imbalanced semi-supervised wind turbine blade icing detection method based on contrastive learning," Renewable Energy, Elsevier, vol. 212(C), pages 251-262.
- Ilia Zaznov & Julian Kunkel & Alfonso Dufour & Atta Badii, 2022. "Predicting Stock Price Changes Based on the Limit Order Book: A Survey," Mathematics, MDPI, vol. 10(8), pages 1-33, April.
- Matthias Gross & Marco Sonnberger, 2022. "Making the Most of Failure and Uncertainty: Welcome Surprises and Contingency in Energy Transition Research," Energies, MDPI, vol. 15(18), pages 1-3, September.
- Wai Khuen Cheng & Khean Thye Bea & Steven Mun Hong Leow & Jireh Yi-Le Chan & Zeng-Wei Hong & Yen-Lin Chen, 2022. "A Review of Sentiment, Semantic and Event-Extraction-Based Approaches in Stock Forecasting," Mathematics, MDPI, vol. 10(14), pages 1-20, July.
- Ivan Kabardin & Sergey Dvoynishnikov & Maxim Gordienko & Sergey Kakaulin & Vadim Ledovsky & Grigoriy Gusev & Vladislav Zuev & Valery Okulov, 2021. "Optical Methods for Measuring Icing of Wind Turbine Blades," Energies, MDPI, vol. 14(20), pages 1-14, October.
- Chang Cai & Jicai Guo & Xiaowen Song & Yanfeng Zhang & Jianxin Wu & Shufeng Tang & Yan Jia & Zhitai Xing & Qing’an Li, 2023. "Review of Data-Driven Approaches for Wind Turbine Blade Icing Detection," Sustainability, MDPI, vol. 15(2), pages 1-20, January.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Gregory Duthé & Imad Abdallah & Sarah Barber & Eleni Chatzi, 2021. "Modeling and Monitoring Erosion of the Leading Edge of Wind Turbine Blades," Energies, MDPI, vol. 14(21), pages 1-33, November.
- Zhijin Zhang & Hang Zhang & Xu Zhang & Qin Hu & Xingliang Jiang, 2024. "A Review of Wind Turbine Icing and Anti/De-Icing Technologies," Energies, MDPI, vol. 17(12), pages 1-34, June.
- Samet Ozturk & Vasilis Fthenakis, 2020. "Predicting Frequency, Time-To-Repair and Costs of Wind Turbine Failures," Energies, MDPI, vol. 13(5), pages 1-25, March.
- Gustavo Felipe Martin Nascimento & Frédéric Wurtz & Patrick Kuo-Peng & Benoit Delinchant & Nelson Jhoe Batistela, 2022. "Quantifying Compressed Air Leakage through Non-Intrusive Load Monitoring Techniques in the Context of Energy Audits," Energies, MDPI, vol. 15(9), pages 1-24, April.
- Illia Baranochnikov & Robert Ślepaczuk, 2022. "A comparison of LSTM and GRU architectures with novel walk-forward approach to algorithmic investment strategy," Working Papers 2022-21, Faculty of Economic Sciences, University of Warsaw.
- Zhou, Kaile & Hu, Dingding & Li, Fangyi, 2022. "Impact of COVID-19 on private driving behavior: Evidence from electric vehicle charging data," Transport Policy, Elsevier, vol. 125(C), pages 164-178.
- Yanpeng Hao & Zhaohong Yao & Junke Wang & Hao Li & Ruihai Li & Lin Yang & Wei Liang, 2019. "A Classification Method for Transmission Line Icing Process Curve Based on Hierarchical K-Means Clustering," Energies, MDPI, vol. 12(24), pages 1-14, December.
- Haicheng Ling & Pierre-Yves Massé & Thibault Rihet & Frédéric Wurtz, 2023. "Realistic Nudging through ICT Pipelines to Help Improve Energy Self-Consumption for Management in Energy Communities," Energies, MDPI, vol. 16(13), pages 1-24, July.
More about this item
Keywords
neural network; forecast error; outlier detection; electricity consumption data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:582-:d:1024541. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.