IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i5p1068-d1597429.html
   My bibliography  Save this article

Lithium-Ion Battery Condition Monitoring: A Frontier in Acoustic Sensing Technology

Author

Listed:
  • Yuanyuan Pan

    (College of Physics, Qingdao University, Qingdao 266071, China)

  • Ke Xu

    (College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China)

  • Ruiqiang Wang

    (Green Angel Technology Development Group Co., Ltd., Qingdao 266108, China)

  • Honghong Wang

    (College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China)

  • Guodong Chen

    (Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China)

  • Kai Wang

    (College of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China)

Abstract

Lithium-ion batteries (LIBs) are widely used in the fields of consumer electronics, new energy vehicles, and grid energy storage due to their high energy density and long cycle life. However, how to effectively evaluate the State of Charge (SOC), State of Health (SOH), and overcharging behavior of batteries has become a key issue in improving battery safety and lifespan. Acoustic sensing technology, as an advanced non-destructive monitoring method, achieves real-time monitoring of the internal state of batteries and accurate evaluation of key parameters through ultrasonic testing technology and acoustic emission technology. This article systematically reviews the research progress of acoustic sensing technology in SOC, SOH, and overcharge behavior evaluation of LIBs, analyzes its working principle and application advantages, and explores future optimization directions and industrialization prospects. Acoustic sensing technology provides important support for building efficient and safe battery management systems.

Suggested Citation

  • Yuanyuan Pan & Ke Xu & Ruiqiang Wang & Honghong Wang & Guodong Chen & Kai Wang, 2025. "Lithium-Ion Battery Condition Monitoring: A Frontier in Acoustic Sensing Technology," Energies, MDPI, vol. 18(5), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1068-:d:1597429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/5/1068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/5/1068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
    2. Xiaoyu Li & Chuxin Wu & Chen Fu & Shanpu Zheng & Jindong Tian, 2022. "State Characterization of Lithium-Ion Battery Based on Ultrasonic Guided Wave Scanning," Energies, MDPI, vol. 15(16), pages 1-19, August.
    3. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    4. Li, Xiaoyu & Huang, Zhijia & Tian, Jindong & Tian, Yong, 2021. "State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter," Energy, Elsevier, vol. 220(C).
    5. Li, Xiaoyu & Chen, Le & Hua, Wen & Yang, Xiaoguang & Tian, Yong & Tian, Jindong & Xiong, Rui, 2024. "Optimal charging for lithium-ion batteries to avoid lithium plating based on ultrasound-assisted diagnosis and model predictive control," Applied Energy, Elsevier, vol. 367(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
    2. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    3. Wu, Chunling & Hu, Wenbo & Meng, Jinhao & Xu, Xianfeng & Huang, Xinrong & Cai, Lei, 2023. "State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment," Energy, Elsevier, vol. 274(C).
    4. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    5. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    6. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    7. Wang, Shunli & Takyi-Aninakwa, Paul & Jin, Siyu & Yu, Chunmei & Fernandez, Carlos & Stroe, Daniel-Ioan, 2022. "An improved feedforward-long short-term memory modeling method for the whole-life-cycle state of charge prediction of lithium-ion batteries considering current-voltage-temperature variation," Energy, Elsevier, vol. 254(PA).
    8. Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
    9. Park, Jinhyeong & Kim, Kunwoo & Park, Seongyun & Baek, Jongbok & Kim, Jonghoon, 2021. "Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications," Energy, Elsevier, vol. 232(C).
    10. Wang, Yujie & Xiang, Haoxiang & Soo, Yin-Yi & Fan, Xiaofei, 2025. "Aging mechanisms, prognostics and management for lithium-ion batteries: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    11. John H. T. Luong & Cang Tran & Di Ton-That, 2022. "A Paradox over Electric Vehicles, Mining of Lithium for Car Batteries," Energies, MDPI, vol. 15(21), pages 1-25, October.
    12. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    13. Lian, Gaoqi & Ye, Min & Wang, Qiao & Li, Yan & Xia, Baozhou & Zhang, Jiale & Xu, Xinxin, 2024. "Robust state-of-charge estimation for LiFePO4 batteries under wide varying temperature environments," Energy, Elsevier, vol. 293(C).
    14. Lucas Henriques & Felipe Prata Lima & Cecilia Castro, 2024. "Combining Advanced Feature-Selection Methods to Uncover Atypical Energy-Consumption Patterns," Future Internet, MDPI, vol. 16(7), pages 1-23, June.
    15. Chen, Junxiong & Zhang, Yu & Wu, Ji & Cheng, Weisong & Zhu, Qiao, 2023. "SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output," Energy, Elsevier, vol. 262(PA).
    16. Li, Kangqun & Zhou, Fei & Chen, Xing & Yang, Wen & Shen, Junjie & Song, Zebin, 2023. "State-of-charge estimation combination algorithm for lithium-ion batteries with Frobenius-norm-based QR decomposition modified adaptive cubature Kalman filter and H-infinity filter based on electro-th," Energy, Elsevier, vol. 263(PC).
    17. Yu, Hanqing & Zhang, Lisheng & Wang, Wentao & Li, Shen & Chen, Siyan & Yang, Shichun & Li, Junfu & Liu, Xinhua, 2023. "State of charge estimation method by using a simplified electrochemical model in deep learning framework for lithium-ion batteries," Energy, Elsevier, vol. 278(C).
    18. Shunli Wang & Pu Ren & Paul Takyi-Aninakwa & Siyu Jin & Carlos Fernandez, 2022. "A Critical Review of Improved Deep Convolutional Neural Network for Multi-Timescale State Prediction of Lithium-Ion Batteries," Energies, MDPI, vol. 15(14), pages 1-27, July.
    19. Cristobal Morales & Augusto Lismayes & Hector Chavez & Harold R. Chamorro & Lorenzo Reyes-Chamorro, 2021. "The Impact of Aging-Preventive Algorithms on BESS Sizing under AGC Performance Standards," Energies, MDPI, vol. 14(21), pages 1-13, November.
    20. Ma, Wentao & Guo, Peng & Wang, Xiaofei & Zhang, Zhiyu & Peng, Siyuan & Chen, Badong, 2022. "Robust state of charge estimation for Li-ion batteries based on cubature kalman filter with generalized maximum correntropy criterion," Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:5:p:1068-:d:1597429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.