IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7231-d670829.html
   My bibliography  Save this article

The Impact of Aging-Preventive Algorithms on BESS Sizing under AGC Performance Standards

Author

Listed:
  • Cristobal Morales

    (Departamento de Ingenieria Electrica, Universidad de Santiago de Chile, Estación Central, Santiago 9170197, Chile)

  • Augusto Lismayes

    (Departamento de Ingenieria Electrica, Universidad de Santiago de Chile, Estación Central, Santiago 9170197, Chile)

  • Hector Chavez

    (Departamento de Ingenieria Electrica (Innovative Energy Technologies Center, INVENT UACh), Universidad de Santiago de Chile, Estación Central, Santiago 9170197, Chile)

  • Harold R. Chamorro

    (KTH, Royal Institute of Technology, SE-100 44 Stockholm, Sweden)

  • Lorenzo Reyes-Chamorro

    (Facultad de Ciencias de la Ingeniería (Innovative Energy Technologies Center, INVENT UACh), Institute of Electricity and Electronics, Universidad Austral de Chile, Valdivia 5110566, Chile)

Abstract

It is normally accepted that Battery Energy Storage Systems improve frequency regulation by providing fast response to the Automatic Generation Control. However, currently available control strategies may lead to early Energy Storage Systems aging given that Automatic Generation Control requirements are increasing due to zero carbon power generation integration. In this sense, it is important to analyze the aging phenomena in order to assess the technical–economical usefulness of Battery Energy Storage Systems towards zero carbon power systems. In order to avoid early aging, various proposals on aging-reducing algorithms can be found; however, it is unclear if those aging-reducing algorithms affect the performance of Battery Energy Storage Systems. It is also unclear whether those effects must be internalized to properly dimension the capacity of Battery Energy Storage Systems to both comply with performance standards and to prevent early aging. Thus, this paper estimates the storage capacity of a Battery Energy Storage Systems to comply with Automatic Generation Control performance standard under aging-reducing operating algorithms by dynamics simulations of a reduced-order, empirically-validated model of the Electric Reliability Council of Texas. The results show the relationship between the required performance of Automatic Generation Control and Battery Energy Storage System capacity, considering a 1-year simulation of Automatic Generation Control dynamics. It can be concluded that the compliance with performance standards is strongly related to the storage capacity, regardless of how fast the device can inject or withdraw power from the grid. Previous results in the state-of-the-art overlook the quantification of this relationship between compliance with performance standards and storage capacity.

Suggested Citation

  • Cristobal Morales & Augusto Lismayes & Hector Chavez & Harold R. Chamorro & Lorenzo Reyes-Chamorro, 2021. "The Impact of Aging-Preventive Algorithms on BESS Sizing under AGC Performance Standards," Energies, MDPI, vol. 14(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7231-:d:670829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Yuanyuan & Sheng, Hanmin & Cheng, Yuhua & Stroe, Daniel-Ioan & Teodorescu, Remus, 2020. "State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis," Applied Energy, Elsevier, vol. 277(C).
    2. Šeruga, Domen & Gosar, Aleš & Sweeney, Caoimhe A. & Jaguemont, Joris & Van Mierlo, Joeri & Nagode, Marko, 2021. "Continuous modelling of cyclic ageing for lithium-ion batteries," Energy, Elsevier, vol. 215(PB).
    3. Li, Xiaoyu & Huang, Zhijia & Tian, Jindong & Tian, Yong, 2021. "State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter," Energy, Elsevier, vol. 220(C).
    4. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    5. Anselma, Pier Giuseppe & Kollmeyer, Phillip & Lempert, Jeremy & Zhao, Ziyu & Belingardi, Giovanni & Emadi, Ali, 2021. "Battery state-of-health sensitive energy management of hybrid electric vehicles: Lifetime prediction and ageing experimental validation," Applied Energy, Elsevier, vol. 285(C).
    6. Mulleriyawage, U.G.K. & Shen, W.X., 2021. "Impact of demand side management on optimal sizing of residential battery energy storage system," Renewable Energy, Elsevier, vol. 172(C), pages 1250-1266.
    7. Uchman, Wojciech & Kotowicz, Janusz & Li, Kin Fun, 2021. "Evaluation of a micro-cogeneration unit with integrated electrical energy storage for residential application," Applied Energy, Elsevier, vol. 282(PA).
    8. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
    9. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "A novel multi-objective stochastic risk co-optimization model of a zero-carbon multi-energy system (ZCMES) incorporating energy storage aging model and integrated demand response," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jinhyeong & Kim, Kunwoo & Park, Seongyun & Baek, Jongbok & Kim, Jonghoon, 2021. "Complementary cooperative SOC/capacity estimator based on the discrete variational derivative combined with the DEKF for electric power applications," Energy, Elsevier, vol. 232(C).
    2. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    3. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Modelling and optimal energy management for battery energy storage systems in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    5. Ang, Yu Qian & Polly, Allison & Kulkarni, Aparna & Chambi, Gloria Bahl & Hernandez, Matthew & Haji, Maha N., 2022. "Multi-objective optimization of hybrid renewable energy systems with urban building energy modeling for a prototypical coastal community," Renewable Energy, Elsevier, vol. 201(P1), pages 72-84.
    6. Zhang, Haoxiang & Wang, Feng & Xu, Bing & Fiebig, Wieslaw, 2022. "Extending battery lifetime for electric wheel loaders with electric-hydraulic hybrid powertrain," Energy, Elsevier, vol. 261(PB).
    7. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    8. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    9. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    10. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    11. Wang, Yubin & Dong, Wei & Yang, Qiang, 2022. "Multi-stage optimal energy management of multi-energy microgrid in deregulated electricity markets," Applied Energy, Elsevier, vol. 310(C).
    12. Svetlana Drobyazko & Suparna Wijaya & Pavel Blecharz & Sergii Bogachov & Milyausha Pinskaya, 2021. "Modeling of Prospects for the Development of Regional Renewable Energy," Energies, MDPI, vol. 14(8), pages 1-17, April.
    13. Calise, Francesco & Cappiello, Francesco Liberato & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2020. "Dynamic modelling and thermoeconomic analysis of micro wind turbines and building integrated photovoltaic panels," Renewable Energy, Elsevier, vol. 160(C), pages 633-652.
    14. Jagdesh Kumar & Chethan Parthasarathy & Mikko Västi & Hannu Laaksonen & Miadreza Shafie-Khah & Kimmo Kauhaniemi, 2020. "Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations," Energies, MDPI, vol. 13(2), pages 1-23, January.
    15. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    16. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    17. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2022. "Forecasting error processing techniques and frequency domain decomposition for forecasting error compensation and renewable energy firming in hybrid systems," Applied Energy, Elsevier, vol. 313(C).
    18. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    19. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    20. Ilman Sulaeman & Gautham Ram Chandra Mouli & Aditya Shekhar & Pavol Bauer, 2021. "Comparison of AC and DC Nanogrid for Office Buildings with EV Charging, PV and Battery Storage," Energies, MDPI, vol. 14(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7231-:d:670829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.