IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v367y2024ics0306261924007797.html
   My bibliography  Save this article

Optimal charging for lithium-ion batteries to avoid lithium plating based on ultrasound-assisted diagnosis and model predictive control

Author

Listed:
  • Li, Xiaoyu
  • Chen, Le
  • Hua, Wen
  • Yang, Xiaoguang
  • Tian, Yong
  • Tian, Jindong
  • Xiong, Rui

Abstract

Lithium plating in lithium-ion batteries for electric vehicles, occurring due to low-temperature or high-rate charging, is a significant factor impacting safety and service life. To address this issue, a novel adaptive charging approach is proposed, combining ultrasound-assisted diagnosis and model predictive control (MPC). In the method, a discrete state-space electrochemical model is used to describe the dynamic characteristics of the battery, and a model predictive controller (MPC) is utilized to optimize the charging current to avoid lithium plating. Considering that factors such as battery performance degradation and variable working temperature affect the battery model's judgment of lithium plating, an ultrasound-assisted diagnosis method is used to determine the critical point of lithium plating. The effectiveness of the method is validated through low-temperature charging and cycle aging experiments. The results indicate that without complex model parameter calibration in different temperatures, the new charging method not only has a higher charging speed than constant current charging, but also can effectively suppress the occurrence of lithium plating on the negative electrode of the battery. The method is expected to be applied in electrochemical energy storage systems to enhance safety and service life.

Suggested Citation

  • Li, Xiaoyu & Chen, Le & Hua, Wen & Yang, Xiaoguang & Tian, Yong & Tian, Jindong & Xiong, Rui, 2024. "Optimal charging for lithium-ion batteries to avoid lithium plating based on ultrasound-assisted diagnosis and model predictive control," Applied Energy, Elsevier, vol. 367(C).
  • Handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007797
    DOI: 10.1016/j.apenergy.2024.123396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924007797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:367:y:2024:i:c:s0306261924007797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.