IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p973-d1593444.html
   My bibliography  Save this article

A Novel Integrated Biorefinery for the Valorization of Residual Cardoon Biomass: Overview of Technologies and Process Simulation

Author

Listed:
  • Vittoria Fatta

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Aristide Giuliano

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Maria Teresa Petrone

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Francesco Nanna

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Antonio Villone

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Donatella Barisano

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Roberto Albergo

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Federico Liuzzi

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

  • Diego Barletta

    (Dipartimento di Ingegneria Industriale, Universitá degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy)

  • Isabella De Bari

    (Division of Bioenergy, Biorefinery, and Green Chemistry, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, S.S. 106 Ionica km 419+500, 75026 Rotondella, MT, Italy)

Abstract

Lignocellulosic biomass is currently widely used in many biorefining processes. The full exploitation of biomass from uncultivated or even marginal lands for the production of biobased chemicals has deserved huge attention in the last few years. Among the sustainable biomass-based value chains, cardoon crops could be a feedstock for biorefineries as they can grow on marginal lands and be used as raw material for multipurpose exploitation, including seeds, roots, and epigeous lignocellulosic solid residue. This work focused on the technical analysis of a novel integrated flowsheet for the exploitation of the lignocellulosic fraction through the assessment of thermochemical, biochemical, and extractive technologies and processes. In particular, high-yield thermochemical processes (gasification), innovative biotechnological processes (syngas fermentation to ethanol), and extractive/catalyzed processes for the valorization of cardoon roots to FDCA and residual solid biomass were modeled and simulated. Inulin conversion to 2,5-Furandicarboxylic acid was the main conversion route taken into consideration. Finally, the novel process flowsheet, treating 130,000 t/y of residual biomass and integrating all proposed technologies, was modeled and assessed using process simulation tools to achieve overall mass and energy balances for comparison with alternative options. The results indicated that cardoon biorefining through the proposed flowsheet can produce, per 1000 tons of input dry biomass, 211 kg of 2,5-Furandicarboxylic acid and 140 kg of ethanol through biomass gasification followed by syngas fermentation. Furthermore, a pre-feasibility analysis was conducted, revealing significant and potentially disruptive results in terms of environmental impact (with 40 kt CO2eq saved) and economic feasibility (with an annual gross profit of EUR 30 M/y).

Suggested Citation

  • Vittoria Fatta & Aristide Giuliano & Maria Teresa Petrone & Francesco Nanna & Antonio Villone & Donatella Barisano & Roberto Albergo & Federico Liuzzi & Diego Barletta & Isabella De Bari, 2025. "A Novel Integrated Biorefinery for the Valorization of Residual Cardoon Biomass: Overview of Technologies and Process Simulation," Energies, MDPI, vol. 18(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:973-:d:1593444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/973/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/973/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marco Castellini & Stefano Ubertini & Diego Barletta & Ilaria Baffo & Pietro Buzzini & Marco Barbanera, 2021. "Techno-Economic Analysis of Biodiesel Production from Microbial Oil Using Cardoon Stalks as Carbon Source," Energies, MDPI, vol. 14(5), pages 1-21, March.
    2. Aristide Giuliano & Enrico Catizzone & Cesare Freda, 2021. "Process Simulation and Environmental Aspects of Dimethyl Ether Production from Digestate-Derived Syngas," IJERPH, MDPI, vol. 18(2), pages 1-21, January.
    3. Tabak, Benjamin Miranda & e Silva, Igor Bettanin Dalla Riva & Quintino, Derick David & Silva, Thiago Christiano, 2025. "Fuel prices connectedness across Brazilian capitals: The case of ethanol and gasoline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    4. Usmani, Zeba & Sharma, Minaxi & Awasthi, Abhishek Kumar & Lukk, Tiit & Tuohy, Maria G. & Gong, Liang & Nguyen-Tri, Phuong & Goddard, Alan D. & Bill, Roslyn M. & Nayak, S.Chandra & Gupta, Vijai Kumar, 2021. "Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Luigi Pari & Vincenzo Alfano & Walter Stefanoni & Francesco Latterini & Federico Liuzzi & Isabella De Bari & Vito Valerio & Anna Ciancolini, 2021. "Inulin Content in Chipped and Whole Roots of Cardoon after Six Months Storage under Natural Conditions," Sustainability, MDPI, vol. 13(7), pages 1-11, April.
    6. Danai Frantzi & Anastasia Zabaniotou, 2021. "Waste-Based Intermediate Bioenergy Carriers: Syngas Production via Coupling Slow Pyrolysis with Gasification under a Circular Economy Model," Energies, MDPI, vol. 14(21), pages 1-37, November.
    7. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Paola Iodice & Andrea Nicolini & Franco Cotana, 2022. "Life Cycle Assessment and Energy Balance of a Polygeneration Plant Fed with Lignocellulosic Biomass of Cynara cardunculus L," Energies, MDPI, vol. 15(7), pages 1-21, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aristide Giuliano, 2023. "The Transition of Scientific Research from Biomass-to-Energy/Biofuels to Biomass-to-Biochemicals in a Biorefinery Systems Framework," Energies, MDPI, vol. 16(5), pages 1-4, February.
    2. Aristide Giuliano & Massimiliano Errico & Hamid Salehi & Pasquale Avino, 2022. "Environmental Impact Assessment by Green Processes," IJERPH, MDPI, vol. 19(23), pages 1-4, November.
    3. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    4. Louw, Jeanne & Dogbe, Eunice S. & Yang, Bin & Görgens, Johann F., 2023. "Prioritisation of biomass-derived products for biorefineries based on economic feasibility: A review on the comparability of techno-economic assessment results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Nahak, B.K. & Preetam, S. & Sharma, Deepa & Shukla, S.K. & Syväjärvi, Mikael & Toncu, Dana-Cristina & Tiwari, Ashutosh, 2022. "Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Kim, Kyeongsu & Suh, Young-Woong & Ha, Jeong-Myeong & An, Jinjoo & Lee, Ung, 2023. "A comprehensive analysis of biphasic reaction system for economical biodiesel production process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Gianluca Cavalaglio & Ippolita Mecca & Paola Iodice & Tommaso Giannoni & Mattia Gelosia & Andrea Nicolini & Ramoon Barros Lovate Temporim, 2023. "Life Cycle Assessment of Polyol Production from Lignin via Organosolv and Liquefaction Treatments," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    8. Mattia Manni & Franco Cotana, 2022. "Life Cycle Thinking a Sustainable Built Environment," Energies, MDPI, vol. 15(10), pages 1-2, May.
    9. Lv, Zedong & Yu, Miao & Li, Songnan & Zhang, Jiawei & Zhao, Jingxiang & Cai, Qinghai, 2024. "A solvation strategy for fabricating acid-base sites on metals/ZSM-5 towards dehydration of high-water-content methanol to dimethyl ether," Renewable Energy, Elsevier, vol. 231(C).
    10. Wojtacha-Rychter, Karolina & Howaniec, Natalia & Smoliński, Adam, 2024. "Investigation of co-gasification characteristics of coal with wood biomass and rubber seals in a fixed bed gasifier," Renewable Energy, Elsevier, vol. 220(C).
    11. Freda, Cesare & Tarquini, Pietro & Sharma, Vinod Kumar & Braccio, Giacobbe, 2022. "Thermodynamic improvement of solar driven gasification compared to conventional one," Energy, Elsevier, vol. 261(PA).
    12. Sergey M. Frolov, 2022. "Organic Waste Gasification by Ultra-Superheated Steam," Energies, MDPI, vol. 16(1), pages 1-11, December.
    13. Pant, Manish & Pant, Tanuja, 2023. "Maximising biotransformation of pine needles to microbial lipids using Lipomyces starkeyi MTCC 1400T," Renewable Energy, Elsevier, vol. 206(C), pages 574-581.
    14. Dixit, Sangita & Sahoo, Kalpana & Gaur, Mahendra & Sahoo, Rajesh Kumar & Dey, Suchanda & Gupta, Vijai Kumar & Subudhi, Enketeswara, 2023. "A meta-omics approach to explore the biofuel-producing enzyme potential from extreme environmental conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    15. Ramoon Barros Lovate Temporim & Gianluca Cavalaglio & Alessandro Petrozzi & Valentina Coccia & Franco Cotana & Andrea Nicolini, 2022. "Life Cycle Assessment of Cynara cardunculus L. -Based Polygeneration and Biodiesel Chains," Sustainability, MDPI, vol. 14(21), pages 1-19, October.
    16. Diana L. Tinoco Caicedo & Myrian Santos Torres & Medelyne Mero-Benavides & Oscar Patiño Lopez & Alexis Lozano Medina & Ana M. Blanco Marigorta, 2023. "Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds," Energies, MDPI, vol. 16(4), pages 1-17, February.
    17. Cai, Chenggu & Wang, Zhanbiao & Ma, Lei & Xu, Zhaoxian & Yu, Jianming & Li, Fuguang, 2024. "Cotton stalk valorization towards bio-based materials, chemicals, and biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    18. Long Zhang & Wuliyasu Bai & Jingzheng Ren, 2023. "Waste-to-Energy: A Midas Touch for Turning Waste into Energy," Energies, MDPI, vol. 16(5), pages 1-5, February.
    19. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    20. Jeyaseelan, Thangaraja & El Samad, Tala & Rajkumar, Sundararajan & Chatterjee, Abhay & Al-Zaili, Jafar, 2023. "A techno-economic assessment of waste oil biodiesel blends for automotive applications in urban areas: Case of India," Energy, Elsevier, vol. 271(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:973-:d:1593444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.