IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics1364032123005270.html
   My bibliography  Save this article

A meta-omics approach to explore the biofuel-producing enzyme potential from extreme environmental conditions

Author

Listed:
  • Dixit, Sangita
  • Sahoo, Kalpana
  • Gaur, Mahendra
  • Sahoo, Rajesh Kumar
  • Dey, Suchanda
  • Gupta, Vijai Kumar
  • Subudhi, Enketeswara

Abstract

Geothermally warmed spring water contaminated with decomposed leaf biomass are unique hot spring ecosystems , are expected to support the recycling of various nutrients and to host lignocellulose degrading thermostable enzymes, genes and bacteria. An attempt is made in the present study to explore CAZymes in a carbohydrate-contaminated unique environment at Deulajhari spring through a multi-omics approach using an indigenous consortium developed from the spring sediment. Co-assembly of shotgun metagenome and metatranscriptome libraries from the Deulajhari hot spring consortia sample recovered seventeen refined, high-quality near-complete genomes. The predominant recovery of thermophilic aerobic chemo-heterotrophic Meiothermus and Rhodothermus has been observed through genome reconstruction. The reported production of an array of enzymes, including xylanase, β-xylosidase, endoglucanase and polysaccharide deacetylase, establishes their lignocellulose-degrading ability. The unexpected strong positive correlation between predominating Meiothermus and less prevailing members of Acetobacteraceae, unclassified Gaiellaceae, unclassified Burkholderiaceae and Tepidimonas of the consortium signifies their unexplored role in biomass degradation. Furthermore, the synergistic involvement of the diverse enzymes represented by a vast gene repertoire is responsible for the degradation of complex plant polysaccharides by the group of bacteria. The novelty of the present study stems from the identification of a diverse range of potential lignocellulose-digesting enzymes expressed by the bacterial consortium. This finding emphasizes the significant potential of these enzymes in facilitating industrial-scale production of biofuel, making it a notable contribution to the field.

Suggested Citation

  • Dixit, Sangita & Sahoo, Kalpana & Gaur, Mahendra & Sahoo, Rajesh Kumar & Dey, Suchanda & Gupta, Vijai Kumar & Subudhi, Enketeswara, 2023. "A meta-omics approach to explore the biofuel-producing enzyme potential from extreme environmental conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005270
    DOI: 10.1016/j.rser.2023.113670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123005270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Usmani, Zeba & Sharma, Minaxi & Awasthi, Abhishek Kumar & Lukk, Tiit & Tuohy, Maria G. & Gong, Liang & Nguyen-Tri, Phuong & Goddard, Alan D. & Bill, Roslyn M. & Nayak, S.Chandra & Gupta, Vijai Kumar, 2021. "Lignocellulosic biorefineries: The current state of challenges and strategies for efficient commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    2. Saini, Jitendra Kumar & Singhania, Reeta Rani & Satlewal, Alok & Saini, Reetu & Gupta, Ravi & Tuli, Deepak & Mathur, Anshu & Adsul, Mukund, 2016. "Improvement of wheat straw hydrolysis by cellulolytic blends of two Penicillium spp," Renewable Energy, Elsevier, vol. 98(C), pages 43-50.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Louw, Jeanne & Dogbe, Eunice S. & Yang, Bin & Görgens, Johann F., 2023. "Prioritisation of biomass-derived products for biorefineries based on economic feasibility: A review on the comparability of techno-economic assessment results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Nahak, B.K. & Preetam, S. & Sharma, Deepa & Shukla, S.K. & Syväjärvi, Mikael & Toncu, Dana-Cristina & Tiwari, Ashutosh, 2022. "Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Kim, Kyeongsu & Suh, Young-Woong & Ha, Jeong-Myeong & An, Jinjoo & Lee, Ung, 2023. "A comprehensive analysis of biphasic reaction system for economical biodiesel production process," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. H K, Narendra Kumar & N, Chandra Mohana & H C, Amrutha & D, Rakshith & B P, Harini & Satish, S., 2023. "Biomass conversion through optimization of cellulase from Chryseobacterium junjuense Bp17 and their utility in bioethanol production," Energy, Elsevier, vol. 283(C).
    5. Pant, Manish & Pant, Tanuja, 2023. "Maximising biotransformation of pine needles to microbial lipids using Lipomyces starkeyi MTCC 1400T," Renewable Energy, Elsevier, vol. 206(C), pages 574-581.
    6. Saini, Jitendra Kumar & Patel, Anil Kumar & Adsul, Mukund & Singhania, Reeta Rani, 2016. "Cellulase adsorption on lignin: A roadblock for economic hydrolysis of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 29-42.
    7. Lu, Aiping & Yu, Xiaojie & Chen, Li & Okonkwo, Clinton Emeka & Otu, Phyllis & Zhou, Cunshan & Lu, Qiaomin & Sun, Qiaolan, 2023. "Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells," Renewable Energy, Elsevier, vol. 205(C), pages 617-626.
    8. Singhania, Reeta Rani & Ruiz, Héctor A. & Awasthi, Mukesh Kumar & Dong, Cheng-Di & Chen, Chiu-Wen & Patel, Anil Kumar, 2021. "Challenges in cellulase bioprocess for biofuel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Thiago Averaldo Bimestre & Fellipe Sartori Silva & Celso Eduardo Tuna & José Carlos dos Santos & João Andrade de Carvalho & Eliana Vieira Canettieri, 2023. "Physicochemical Characterization and Thermal Behavior of Different Wood Species from the Amazon Biome," Energies, MDPI, vol. 16(5), pages 1-10, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123005270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.