IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p786-d1586286.html
   My bibliography  Save this article

Li-Ion Batteries for Electric Vehicle Applications: An Overview of Accurate State of Charge/State of Health Estimation Methods

Author

Listed:
  • Adolfo Dannier

    (Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy)

  • Gianluca Brando

    (Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy)

  • Mattia Ribera

    (Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy)

  • Ivan Spina

    (Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy)

Abstract

Road transport significantly contributes to greenhouse gas emissions in all places where it is used and therefore also in Europe, prompting the EU to set ambitious objectives for CO 2 reduction. In order to reach these objectives, the automotive industry is transitioning to electric vehicles, utilizing electric powertrains powered by battery packs. However, the longevity and reliability of these batteries are critical concerns. This review paper focuses on the advanced diagnostic techniques for effective battery State of Charge (SoC) and State of Health (SoH) monitoring. Accurate SoC/SoH estimation is crucial for optimizing battery performance, avoiding premature degradation, and ensuring driver safety. By investigating these areas, this paper aims to contribute to the development of more sustainable and durable electric vehicles, supporting the transition to cleaner transportation systems.

Suggested Citation

  • Adolfo Dannier & Gianluca Brando & Mattia Ribera & Ivan Spina, 2025. "Li-Ion Batteries for Electric Vehicle Applications: An Overview of Accurate State of Charge/State of Health Estimation Methods," Energies, MDPI, vol. 18(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:786-:d:1586286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/786/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/786/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianfang Jia & Jianyu Liang & Yuanhao Shi & Jie Wen & Xiaoqiong Pang & Jianchao Zeng, 2020. "SOH and RUL Prediction of Lithium-Ion Batteries Based on Gaussian Process Regression with Indirect Health Indicators," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Panagiotis Eleftheriadis & Spyridon Giazitzis & Sonia Leva & Emanuele Ogliari, 2023. "Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview," Forecasting, MDPI, vol. 5(3), pages 1-24, September.
    3. Lim, KaiChin & Bastawrous, Hany Ayad & Duong, Van-Huan & See, Khay Wai & Zhang, Peng & Dou, Shi Xue, 2016. "Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles," Applied Energy, Elsevier, vol. 169(C), pages 40-48.
    4. Luping Chen & Liangjun Xu & Ruoyu Wang, 2017. "State of Charge Estimation for Lithium-Ion Battery by Using Dual Square Root Cubature Kalman Filter," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-10, December.
    5. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    6. Caiping Zhang & Jiuchun Jiang & Linjing Zhang & Sijia Liu & Leyi Wang & Poh Chiang Loh, 2016. "A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery," Energies, MDPI, vol. 9(11), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Xiang, Haoxiang & Soo, Yin-Yi & Fan, Xiaofei, 2025. "Aging mechanisms, prognostics and management for lithium-ion batteries: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    2. Hui Pang & Fengqi Zhang, 2018. "Experimental Data-Driven Parameter Identification and State of Charge Estimation for a Li-Ion Battery Equivalent Circuit Model," Energies, MDPI, vol. 11(5), pages 1-14, April.
    3. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Jun Yuan & Zhili Qin & Haikun Huang & Xingdong Gan & Shuguang Li & Baihai Li, 2023. "State of Health Estimation and Remaining Useful Life Prediction for a Lithium-Ion Battery with a Two-Layer Stacking Regressor," Energies, MDPI, vol. 16(5), pages 1-15, February.
    5. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    6. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    7. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    8. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    9. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    11. Ozkurt, Celil & Camci, Fatih & Atamuradov, Vepa & Odorry, Christopher, 2016. "Integration of sampling based battery state of health estimation method in electric vehicles," Applied Energy, Elsevier, vol. 175(C), pages 356-367.
    12. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
    13. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    14. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    15. Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
    16. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Gwan-Soo Park & Hee-Je Kim, 2019. "Online Remaining Useful Life Prediction for Lithium-Ion Batteries Using Partial Discharge Data Features," Energies, MDPI, vol. 12(22), pages 1-14, November.
    17. Renxin, Xiao & Yi, Yang & Xianguang, Jia & Nan, Pan, 2023. "Collaborative estimations of state of energy and maximum available energy of lithium-ion batteries with optimized time windows considering instantaneous energy efficiencies," Energy, Elsevier, vol. 274(C).
    18. Haipeng Pan & Chengte Chen & Minming Gu, 2022. "A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations," Energies, MDPI, vol. 15(7), pages 1-15, March.
    19. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
    20. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:786-:d:1586286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.