IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/5489356.html
   My bibliography  Save this article

State of Charge Estimation for Lithium-Ion Battery by Using Dual Square Root Cubature Kalman Filter

Author

Listed:
  • Luping Chen
  • Liangjun Xu
  • Ruoyu Wang

Abstract

The state of charge (SOC) plays an important role in battery management systems (BMS). However, SOC cannot be measured directly and an accurate state estimation is difficult to obtain due to the nonlinear battery characteristics. In this paper, a method of SOC estimation with parameter updating by using the dual square root cubature Kalman filter (DSRCKF) is proposed. The proposed method has been validated experimentally and the results are compared with dual extended Kalman filter (DEKF) and dual square root unscented Kalman filter (DSRUKF) methods. Experimental results have shown that the proposed method has the most balance performance among them in terms of the SOC estimation accuracy, execution time, and convergence rate.

Suggested Citation

  • Luping Chen & Liangjun Xu & Ruoyu Wang, 2017. "State of Charge Estimation for Lithium-Ion Battery by Using Dual Square Root Cubature Kalman Filter," Mathematical Problems in Engineering, Hindawi, vol. 2017, pages 1-10, December.
  • Handle: RePEc:hin:jnlmpe:5489356
    DOI: 10.1155/2017/5489356
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5489356.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2017/5489356.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2017/5489356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaishuai Zhang & Youhong Wan & Jie Ding & Yangyang Da, 2021. "State of Charge (SOC) Estimation Based on Extended Exponential Weighted Moving Average H ∞ Filtering," Energies, MDPI, vol. 14(6), pages 1-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:5489356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.