IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i7p2498-d782019.html
   My bibliography  Save this article

A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations

Author

Listed:
  • Haipeng Pan

    (School of Mechanical and Automatic, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Chengte Chen

    (School of Mechanical and Automatic, Zhejiang Sci-Tech University, Hangzhou 310018, China)

  • Minming Gu

    (School of Mechanical and Automatic, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract

Accurately predicting the remaining useful life (RUL) of lithium-ion batteries (LIBs) is important for electronic equipment. A new algorithm is proposed to aim at the nonlinear degradation caused by capacity regeneration and random fluctuations. Firstly, the health state degradation curve of LIBs is divided into the normal degradation trend part, capacity regeneration part, and random fluctuation part. Secondly, the capacity degradation curve of LIBs is decomposed by the empirical mode decomposition (EMD) to obtain the known long-term degradation trend part of LIBs. Then, the long short-term memory (LSTM) neural network is used to predict the future normal degradation trend part based on the known long-term degradation trend part of LIBs. In addition, the LIBs’ state of health (SOH), the initial state of charge (SOC), and the rest time are taken as the inputs of Gaussian process regression (GPR) to predict the LIBs’ capacity regeneration part. After that, random numbers obeying the Stable distribution are generated as the random fluctuation part of LIBs. Finally, the Monte Carlo simulation is used to predict the probability density distribution of the RUL of LIBs. The paper is verified by the LIBs’ public dataset provided by the University of Maryland. The experimental results show that the predicted RMSE of the proposed method is lower than 0.6%.

Suggested Citation

  • Haipeng Pan & Chengte Chen & Minming Gu, 2022. "A Method for Predicting the Remaining Useful Life of Lithium Batteries Considering Capacity Regeneration and Random Fluctuations," Energies, MDPI, vol. 15(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2498-:d:782019
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/7/2498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/7/2498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    2. Patil, Meru A. & Tagade, Piyush & Hariharan, Krishnan S. & Kolake, Subramanya M. & Song, Taewon & Yeo, Taejung & Doo, Seokgwang, 2015. "A novel multistage Support Vector Machine based approach for Li ion battery remaining useful life estimation," Applied Energy, Elsevier, vol. 159(C), pages 285-297.
    3. Lingling Li & Pengchong Wang & Kuei-Hsiang Chao & Yatong Zhou & Yang Xie, 2016. "Remaining Useful Life Prediction for Lithium-Ion Batteries Based on Gaussian Processes Mixture," PLOS ONE, Public Library of Science, vol. 11(9), pages 1-13, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingxi Kong & Diganta Das & Michael G. Pecht, 2022. "The Distribution and Detection Issues of Counterfeit Lithium-Ion Batteries," Energies, MDPI, vol. 15(10), pages 1-13, May.
    2. Yongsheng Shi & Tailin Li & Leicheng Wang & Hongzhou Lu & Yujun Hu & Beichen He & Xinran Zhai, 2023. "A Method for Predicting the Life of Lithium-Ion Batteries Based on Successive Variational Mode Decomposition and Optimized Long Short-Term Memory," Energies, MDPI, vol. 16(16), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
    2. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    3. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
    4. Yang, Yixin, 2021. "A machine-learning prediction method of lithium-ion battery life based on charge process for different applications," Applied Energy, Elsevier, vol. 292(C).
    5. Zhang, Sen-Ju & Kang, Rui & Lin, Yan-Hui, 2021. "Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Luping Chen & Liangjun Xu & Yilin Zhou, 2018. "Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy," Energies, MDPI, vol. 11(4), pages 1-15, April.
    7. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    8. Jingxi Yang & Matthew Beatty & Dani Strickland & Mina Abedi-Varnosfaderani & Joe Warren, 2023. "Second-Life Battery Capacity Estimation and Method Comparison," Energies, MDPI, vol. 16(7), pages 1-17, April.
    9. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).
    10. Shuxiang Song & Chen Fei & Haiying Xia, 2020. "Lithium-Ion Battery SOH Estimation Based on XGBoost Algorithm with Accuracy Correction," Energies, MDPI, vol. 13(4), pages 1-13, February.
    11. Zhengyu Liu & Jingjie Zhao & Hao Wang & Chao Yang, 2020. "A New Lithium-Ion Battery SOH Estimation Method Based on an Indirect Enhanced Health Indicator and Support Vector Regression in PHMs," Energies, MDPI, vol. 13(4), pages 1-17, February.
    12. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    13. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    14. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    15. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
    16. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    17. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    19. Ma, Guijun & Zhang, Yong & Cheng, Cheng & Zhou, Beitong & Hu, Pengchao & Yuan, Ye, 2019. "Remaining useful life prediction of lithium-ion batteries based on false nearest neighbors and a hybrid neural network," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    20. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:7:p:2498-:d:782019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.