IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i3p546-d1576347.html
   My bibliography  Save this article

Photovoltaic-Thermal Side-Absorption Concentrated Module with Micro-Structures as Spectrum-Division Component for a Hybrid-Collecting Reflection Solar System

Author

Listed:
  • Jyh-Rou Sze

    (National Applied Research Laboratories, Taiwan Instrument Research Institute, Hsinchu 300092, Taiwan)

  • An-Chi Wei

    (Graduate Institute of Energy Engineering, National Central University, Taoyuan City 320317, Taiwan)

Abstract

A photovoltaic-thermal side-absorption concentrated module (PT-SACM) based on spectrum division for photovoltaic-thermal hybrid applications is carried out. In order to reduce the absorption by materials and the axial-chromatic aberration caused by the transmissive optical system and to improve the performance of the entire system, a reflective system, the parabolic mirror array, fabricated by the ultra-precision diamond turning technology, is proposed herein. For the purposes of spectrum division, thinner volume, lightweight, and wide acceptance angle, the proposed module is designed with a diffraction optical element (DOE), a light-guide plate with a micro-structure array and a parabolic mirror array. Among them, the DOE can separate the solar spectrum into the visible band, which is converted to electrical energy via photovoltaics, and the infrared band, whose thermal energy is collected. Experimental measurements show that the overall optical efficiency of the entire system reached 38.32%, while a deviation percentage of 3.5% is calculated based on the simulation. The system has successfully demonstrated the separation of visible and infrared bands of the solar spectrum. Meanwhile, the lateral displacement between the micro-structures of the light-guide plate and the focus of the parabolic mirror array can be used to compensate for the angular deviation of the sun incidence, thereby achieving wide-angle acceptance via the proposed solar concentration system.

Suggested Citation

  • Jyh-Rou Sze & An-Chi Wei, 2025. "Photovoltaic-Thermal Side-Absorption Concentrated Module with Micro-Structures as Spectrum-Division Component for a Hybrid-Collecting Reflection Solar System," Energies, MDPI, vol. 18(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:546-:d:1576347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/3/546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/3/546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paolo Iodice & Amedeo Amoresano & Giuseppe Langella & Francesco Saverio Marra, 2024. "Energy Advantages and Thermodynamic Performance of Scheffler Receivers as Thermal Sources for Solar Thermal Power Generation," Energies, MDPI, vol. 17(21), pages 1-17, October.
    2. Fu, Zaiguo & Xue, Mingxing & Shao, Zhixiong & Zhu, Qunzhi, 2024. "Performance evaluation of a novel vacuum-tube PV/T system with inserted PV module and heat pipe," Renewable Energy, Elsevier, vol. 223(C).
    3. Crisostomo, Felipe & Taylor, Robert A. & Surjadi, Desiree & Mojiri, Ahmad & Rosengarten, Gary & Hawkes, Evatt R., 2015. "Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector," Applied Energy, Elsevier, vol. 141(C), pages 238-246.
    4. Alberto Bacilio Quispe Cohaila & Elisban Juani Sacari Sacari & Wilson Orlando Lanchipa Ramos & Hugo Benito Canahua Loza & Rocío María Tamayo Calderón & Jesús Plácido Medina Salas & Francisco Gamarra G, 2024. "Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite," Energies, MDPI, vol. 17(23), pages 1-17, November.
    5. Julia Lima Toroxel & Sandra Monteiro Silva, 2024. "A Review of Passive Solar Heating and Cooling Technologies Based on Bioclimatic and Vernacular Architecture," Energies, MDPI, vol. 17(5), pages 1-28, February.
    6. Ceylin Şirin & Fatih Selimefendigil & Hakan Fehmi Öztop, 2023. "Performance Analysis and Identification of an Indirect Photovoltaic Thermal Dryer with Aluminum Oxide Nano-Embedded Thermal Energy Storage Modification," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    7. An-Chi Wei & Wei-Jie Chang & Jyh-Rou Sze, 2020. "A Side-Absorption Concentrated Module with a Diffractive Optical Element as a Spectral-Beam-Splitter for a Hybrid-Collecting Solar System," Energies, MDPI, vol. 13(1), pages 1-14, January.
    8. Tawanda Kunatsa & Herman C. Myburgh & Allan De Freitas, 2024. "Efficient Charging Prioritisation and Optimisation of Solar PV-Powered Portable Electronic Devices," Energies, MDPI, vol. 17(23), pages 1-23, December.
    9. Chu, Shangling & Zhang, Heng & Chen, Haiping, 2024. "Performance analysis and optimization of a combined cooling, heating and power system based on active regulation of thermal energy storage," Energy, Elsevier, vol. 312(C).
    10. Yildirim, Mehmet Ali & Cebula, Artur, 2024. "A numerical and experimental analysis of a novel highly-efficient water-based PV/T system," Energy, Elsevier, vol. 289(C).
    11. Junghwan Byeon & Hyeongon Park & Woong Ko, 2024. "Comparative Analysis of Electrostatic Charging Characteristics Considering the Flow Conditions of Nonconductive Flammable Liquids," Energies, MDPI, vol. 17(23), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios E. Arnaoutakis & Dimitris A. Katsaprakakis, 2024. "Energy Yield of Spectral Splitting Concentrated Solar Power Photovoltaic Systems," Energies, MDPI, vol. 17(3), pages 1-12, January.
    2. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    3. Li, Guiqiang & Pei, Gang & Ji, Jie & Su, Yuehong, 2015. "Outdoor overall performance of a novel air-gap-lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system," Applied Energy, Elsevier, vol. 144(C), pages 214-223.
    4. Mojiri, Ahmad & Stanley, Cameron & Rodriguez-Sanchez, David & Everett, Vernie & Blakers, Andrew & Rosengarten, Gary, 2016. "A spectral-splitting PV–thermal volumetric solar receiver," Applied Energy, Elsevier, vol. 169(C), pages 63-71.
    5. Abdul K Hamid & Nsilulu T Mbungu & A. Elnady & Ramesh C Bansal & Ali A Ismail & Mohammad A AlShabi, 2023. "A systematic review of grid-connected photovoltaic and photovoltaic/thermal systems: Benefits, challenges and mitigation," Energy & Environment, , vol. 34(7), pages 2775-2814, November.
    6. Chen, Haifei & Li, Guiqiang & Zhong, Yang & Wang, Yunjie & Cai, Baorui & Yang, Jie & Badiei, Ali & Zhang, Yang, 2021. "Exergy analysis of a high concentration photovoltaic and thermal system for comprehensive use of heat and electricity," Energy, Elsevier, vol. 225(C).
    7. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    8. Qiu, Huichong & Liu, Hui & Xia, Qi & Lin, Zihan & Chen, Chen, 2024. "A spectral splitting CPV/T hybrid system based on wave-selecting filter coated compound parabolic concentrator and linear Fresnel reflector concentrator," Renewable Energy, Elsevier, vol. 226(C).
    9. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    10. Qu, Wanjun & Xing, Xueli & Cao, Yali & Liu, Taixiu & Hong, Hui & Jin, Hongguang, 2020. "A concentrating solar power system integrated photovoltaic and mid-temperature solar thermochemical processes," Applied Energy, Elsevier, vol. 262(C).
    11. Bicer, Yusuf & Sprotte, André Felipe Vitorio & Dincer, Ibrahim, 2017. "Concentrated solar light splitting using cold mirrors for photovoltaics and photonic hydrogen production applications," Applied Energy, Elsevier, vol. 197(C), pages 169-182.
    12. Mustafa Karimi & Tomoyuki Chikamoto & Myonghyang Lee & Teppei Tanaka, 2024. "Impact of Building Orientation on Energy Performance of Residential Buildings in Various Cities Across Afghanistan," Sustainability, MDPI, vol. 16(24), pages 1-23, December.
    13. Huang, Maoquan & Ren, Xingjie & Tang, G.H. & Sun, Qie & Du, Mu, 2024. "Feasibility of realizing photothermal, photovoltaic, and radiative cooling with a flexible structure," Renewable Energy, Elsevier, vol. 236(C).
    14. Kandilli, Canan & Külahlı, Gürhan, 2017. "Performance analysis of a concentrated solar energy for lighting-power generation combined system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 101(C), pages 713-727.
    15. Lu, Kegui & Yu, Qiongwan & Zhao, Bin & Pei, Gang, 2023. "Performance analysis of a novel PV/T hybrid system based on spectral beam splitting," Renewable Energy, Elsevier, vol. 207(C), pages 398-406.
    16. Vasileios Kapsalis & Grigorios Kyriakopoulos & Miltiadis Zamparas & Athanasios Tolis, 2021. "Investigation of the Photon to Charge Conversion and Its Implication on Photovoltaic Cell Efficient Operation," Energies, MDPI, vol. 14(11), pages 1-16, May.
    17. Zhao, Ning & Wang, Jiangjiang, 2024. "Solar full spectrum management in low and medium temperature light-driven chemical hydrogen synthesis - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    18. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    20. Zhao, Shuang & Li, Wenzhi & Abd El-Samie, Mostafa M. & Ju, Xing & Xu, Chao, 2022. "Numerical simulation to study the effect of spectral division of solar irradiance on the spectral splitting photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 182(C), pages 634-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:546-:d:1576347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.