IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5393-d1509699.html
   My bibliography  Save this article

Energy Advantages and Thermodynamic Performance of Scheffler Receivers as Thermal Sources for Solar Thermal Power Generation

Author

Listed:
  • Paolo Iodice

    (Dipartimento di Ingegneria Industriale, Università Degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy)

  • Amedeo Amoresano

    (Dipartimento di Ingegneria Industriale, Università Degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy)

  • Giuseppe Langella

    (Dipartimento di Ingegneria Industriale, Università Degli Studi di Napoli Federico II, Via Claudio 21, 80125 Naples, Italy)

  • Francesco Saverio Marra

    (Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Via Guglielmo Marconi 4, 80125 Naples, Italy)

Abstract

This article examines the prospects of Scheffler solar receivers integrated into renewable energy power plants for civil applications. This kind of solar receiver can offer satisfactory energetic performance with acceptable energy conversion efficiency when compared to other technologies to harness solar energy since the high-quality focal receiver can reduce heat losses also supposing great levels of evaporation temperature. In this research, energetic optimization and a broad assessment of Scheffler-type solar receivers are thoroughly conducted for variable sun radiation and considering a broad range of working conditions. To achieve this goal, thermodynamic optimization of the chief factors was attained via a numerical model which calculated the energy efficiency of the Scheffler solar receiver at part-load working conditions by computing all energy losses negatively affecting the heat exchange phase in the cavity receiver. The results obtained in this study show that the solar collector efficiencies of Scheffler receivers appear more promising than that of usual parabolic trough collectors; moreover, Scheffler receivers persisted with less sensitivity to reductions in solar radiation intensity. For these reasons, solar power systems based on Scheffler-type systems can be used from tens to hundreds of kW to ensure the energetic supply of small urban settlements with acceptable efficiency, optimistic investments, simple construction and reduced overall sizes.

Suggested Citation

  • Paolo Iodice & Amedeo Amoresano & Giuseppe Langella & Francesco Saverio Marra, 2024. "Energy Advantages and Thermodynamic Performance of Scheffler Receivers as Thermal Sources for Solar Thermal Power Generation," Energies, MDPI, vol. 17(21), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5393-:d:1509699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5393/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5393/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jing & Li, Pengcheng & Gao, Guangtao & Pei, Gang & Su, Yuehong & Ji, Jie, 2017. "Thermodynamic and economic investigation of a screw expander-based direct steam generation solar cascade Rankine cycle system using water as thermal storage fluid," Applied Energy, Elsevier, vol. 195(C), pages 137-151.
    2. Azzouzi, Djelloul & Boumeddane, Boussad & Abene, Abderahmane, 2017. "Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish," Renewable Energy, Elsevier, vol. 106(C), pages 111-121.
    3. Petrollese, Mario & Cocco, Daniele, 2020. "A multi-scenario approach for a robust design of solar-based ORC systems," Renewable Energy, Elsevier, vol. 161(C), pages 1184-1194.
    4. Iviwe Mcingani & Edson L. Meyer & Ochuko K. Overen, 2024. "The Impact of Ambient Weather Conditions and Energy Usage Patterns on the Performance of a Domestic Off-Grid Photovoltaic System," Energies, MDPI, vol. 17(19), pages 1-19, October.
    5. Li, Jing & Li, Pengcheng & Pei, Gang & Alvi, Jahan Zeb & Ji, Jie, 2016. "Analysis of a novel solar electricity generation system using cascade Rankine cycle and steam screw expander," Applied Energy, Elsevier, vol. 165(C), pages 627-638.
    6. Sachdeva, Jatin & Singh, Onkar, 2021. "Comparative evaluation of solarized triple combined cycle for different ORC fluids," Renewable Energy, Elsevier, vol. 163(C), pages 1333-1342.
    7. Roumpedakis, Tryfon C. & Loumpardis, George & Monokrousou, Evropi & Braimakis, Konstantinos & Charalampidis, Antonios & Karellas, Sotirios, 2020. "Exergetic and economic analysis of a solar driven small scale ORC," Renewable Energy, Elsevier, vol. 157(C), pages 1008-1024.
    8. Ruelas, José & Velázquez, Nicolás & Cerezo, Jesús, 2013. "A mathematical model to develop a Scheffler-type solar concentrator coupled with a Stirling engine," Applied Energy, Elsevier, vol. 101(C), pages 253-260.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pengcheng & Cao, Qing & Li, Jing & Lin, Haiwei & Wang, Yandong & Gao, Guangtao & Pei, Gang & Jie, Desuan & Liu, Xunfen, 2021. "An innovative approach to recovery of fluctuating industrial exhaust heat sources using cascade Rankine cycle and two-stage accumulators," Energy, Elsevier, vol. 228(C).
    2. Paolo Iodice & Amedeo Amoresano & Giuseppe Langella & Francesco Saverio Marra, 2023. "Numerical Optimization and Energetic Advantages of an Innovative Solar Power System Based on Scheffler Receiver Coupled with Volumetric Expanders," Energy & Environment, , vol. 34(3), pages 602-620, May.
    3. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    4. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.
    5. Ehtiwesh, Amin & Kutlu, Cagri & Su, Yuehong & Riffat, Saffa, 2023. "Modelling and performance evaluation of a direct steam generation solar power system coupled with steam accumulator to meet electricity demands for a hospital under typical climate conditions in Libya," Renewable Energy, Elsevier, vol. 206(C), pages 795-807.
    6. Wang, Chuang & Xing, Ziwen & Sun, Shizhong & He, Zhilong, 2020. "Loss analysis of oil-free twin-screw expanders for recovering energy in fuel cell systems by means of p-θ diagrams," Energy, Elsevier, vol. 201(C).
    7. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    8. Hu, Shuozhuo & Yang, Zhen & Li, Jian & Duan, Yuanyuan, 2022. "Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation," Renewable Energy, Elsevier, vol. 186(C), pages 628-645.
    9. Paolo Iodice & Giuseppe Langella & Amedeo Amoresano, 2020. "Exergetic Analysis of a New Direct Steam Generation Solar Plant Using Screw Expanders," Energies, MDPI, vol. 13(3), pages 1-19, February.
    10. Soulis, Konstantinos X. & Manolakos, Dimitris & Ntavou, Erika & Kosmadakis, George, 2022. "A geospatial analysis approach for the operational assessment of solar ORC systems. Case study: Performance evaluation of a two-stage solar ORC engine in Greece," Renewable Energy, Elsevier, vol. 181(C), pages 116-128.
    11. Loni, Reyhaneh & Mahian, Omid & Markides, Christos N. & Bellos, Evangelos & le Roux, Willem G. & Kasaeian, Ailbakhsh & Najafi, Gholamhassan & Rajaee, Fatemeh, 2021. "A review of solar-driven organic Rankine cycles: Recent challenges and future outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    13. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    14. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    15. Sophia Akhtar & M Khurram Hashmi & Ishaq Ahmad & Rizwan Raza, 2018. "Advances and significance of solar reflectors in solar energy technology in Pakistan," Energy & Environment, , vol. 29(4), pages 435-455, June.
    16. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    17. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    18. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    19. Mendoza Castellanos, Luis Sebastian & Carrillo Caballero, Gaylord Enrique & Melian Cobas, Vladimir Rafael & Silva Lora, Electo Eduardo & Martinez Reyes, Arnaldo Martin, 2017. "Mathematical modeling of the geometrical sizing and thermal performance of a Dish/Stirling system for power generation," Renewable Energy, Elsevier, vol. 107(C), pages 23-35.
    20. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5393-:d:1509699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.