IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i23p5830-d1526278.html
   My bibliography  Save this article

Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite

Author

Listed:
  • Alberto Bacilio Quispe Cohaila

    (Laboratorio de Generación y Almacenamiento de Hidrogeno, Facultad de Ingeniería, Escuela Profesional de Metalurgia y Materiales, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru
    Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru)

  • Elisban Juani Sacari Sacari

    (Facultad de Ciencias, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 15333, Peru
    Centro de Energías Renovables de Tacna (CERT), Facultad de Ciencias, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru)

  • Wilson Orlando Lanchipa Ramos

    (Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru
    Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. República de Venezuela s/n, Lima 15081, Peru)

  • Hugo Benito Canahua Loza

    (Laboratorio de Generación y Almacenamiento de Hidrogeno, Facultad de Ingeniería, Escuela Profesional de Metalurgia y Materiales, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru)

  • Rocío María Tamayo Calderón

    (Centro de Microscopia Electrónica, Facultad de Ingeniería de Procesos, Universidad Nacional de San Agustín, Arequipa 04001, Peru)

  • Jesús Plácido Medina Salas

    (Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru
    Laboratorio de Nanotecnología (NanoLab), Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru)

  • Francisco Gamarra Gómez

    (Grupo de Investigación GIMAECC, Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Ciudad Universitaria, Av. Miraflores s/n, Tacna 23003, Peru
    Laboratorio de Nanotecnología (NanoLab), Facultad de Ingeniería, Universidad Nacional Jorge Basadre Grohmann, Av. Miraflores s/n, Tacna 23003, Peru)

  • Ramalinga Viswanathan Mangalaraja

    (Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, Santiago 7941169, Chile)

  • Saravanan Rajendran

    (Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile)

Abstract

This study presents a comprehensive investigation into the synthesis, characterization, and photocatalytic performance of NiTiO 3 /TiO 2 nanocomposites for solar hydrogen production. Through a carefully optimized sol–gel method, we synthesized a heterojunction photocatalyst comprising 99.2% NiTiO 3 and 0.8% anatase TiO 2 . Extensive characterization using XRD, Raman spectroscopy, FTIR, UV–visible spectroscopy, photoluminescence spectroscopy, and TEM revealed the formation of an intimate heterojunction between rhombohedral NiTiO 3 and anatase TiO 2 . The nanocomposite demonstrated remarkable improvements in optical and electronic properties, including enhanced UV–visible light absorption and an 85% reduction in charge carrier recombination compared to pristine NiTiO 3 . Crystallite size analysis showed a reduction from 53.46 nm to 46.35 nm upon TiO 2 incorporation, leading to increased surface area and active sites. High-resolution TEM confirmed the formation of well-defined interfaces between NiTiO 3 and TiO 2 , with lattice fringes of 0.349 nm and 0.249 nm corresponding to their respective crystallographic planes. Under UV irradiation, the NiTiO 3 /TiO 2 nanocomposite exhibited superior photocatalytic performance, achieving a hydrogen evolution rate of 9.74 μmol min−1, representing a 17.1% improvement over pristine NiTiO 3 . This enhancement is attributed to the synergistic effects of improved light absorption, reduced charge recombination, and efficient charge separation at the heterojunction interface. Our findings demonstrate the potential of NiTiO 3 /TiO 2 nanocomposites as efficient photocatalysts for solar hydrogen production and contribute to the development of advanced materials for renewable energy applications.

Suggested Citation

  • Alberto Bacilio Quispe Cohaila & Elisban Juani Sacari Sacari & Wilson Orlando Lanchipa Ramos & Hugo Benito Canahua Loza & Rocío María Tamayo Calderón & Jesús Plácido Medina Salas & Francisco Gamarra G, 2024. "Improving Photocatalytic Hydrogen Production with Sol–Gel Prepared NiTiO₃/TiO₂ Composite," Energies, MDPI, vol. 17(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5830-:d:1526278
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/23/5830/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/23/5830/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peng Zhou & Ishtiaque Ahmed Navid & Yongjin Ma & Yixin Xiao & Ping Wang & Zhengwei Ye & Baowen Zhou & Kai Sun & Zetian Mi, 2023. "Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting," Nature, Nature, vol. 613(7942), pages 66-70, January.
    2. Alberto Bacilio Quispe Cohaila & Elisban Juani Sacari Sacari & Wilson Orlando Lanchipa Ramos & Rocío María Tamayo Calderón & Jesús Plácido Medina Salas & Francisco Gamarra Gómez & Ramalinga Viswanatha, 2024. "Photocatalytic Hydrogen Production Enhancement of NiTiO 3 Perovskite through Cobalt Incorporation," Energies, MDPI, vol. 17(15), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Liping & Gao, Jinyu & Huang, Qi & Wang, Xuepeng & Li, Zhenzi & Li, Mingxia & Zhou, Wei, 2024. "Element engineering in graphitic carbon nitride photocatalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Wang, Yangyang & Liu, Yangyang & Xu, Zaifeng & Yin, Kexin & Zhou, Yaru & Zhang, Jifu & Cui, Peizhe & Ma, Shinan & Wang, Yinglong & Zhu, Zhaoyou, 2024. "A review on renewable energy-based chemical engineering design and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Xin Liu & Danhao Wang & Wei Chen & Yang Kang & Shi Fang & Yuanmin Luo & Dongyang Luo & Huabin Yu & Haochen Zhang & Kun Liang & Lan Fu & Boon S. Ooi & Sheng Liu & Haiding Sun, 2024. "Optoelectronic synapses with chemical-electric behaviors in gallium nitride semiconductors for biorealistic neuromorphic functionality," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    4. Jueun Lee & Junseong Lee & Junhyeok Seo, 2024. "Exchange coupling states of cobalt complexes to control proton-coupled electron transfer," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Tang, Junying & Zhao, Tianshuo & He, Yulian & Guo, Ruitang & Pan, Weiguo & Zhang, Hua & Dou, Binlin, 2024. "Amorphous cobalt boride exploring as the first first-row transition-metal-based metallic photocatalyst for efficient water splitting over 800 nm," Renewable Energy, Elsevier, vol. 222(C).
    6. Xu Xin & Yuke Li & Youzi Zhang & Yijin Wang & Xiao Chi & Yanping Wei & Caozheng Diao & Jie Su & Ruiling Wang & Peng Guo & Jiakang Yu & Jia Zhang & Ana Jorge Sobrido & Maria-Magdalena Titirici & Xuanhu, 2024. "Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Xia, Qi & Zhao, Jianguo & Chen, Chen & Jin, Weiya, 2023. "Modeling of CO2/H2O Co-electrolysis using solar-driven SOEC coupled with ammonia-based chemical heat pump," Renewable Energy, Elsevier, vol. 212(C), pages 128-137.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:23:p:5830-:d:1526278. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.