IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i2p315-d1565443.html
   My bibliography  Save this article

Techno-Economic Design Analysis of Electric Vehicle Charging Stations Powered by Photovoltaic Technology on the Highways of Saudi Arabia

Author

Listed:
  • Yassir Alhazmi

    (Electrical Engineering Department, Umm Al-Qura University, Makkah 24227, Saudi Arabia)

Abstract

The globalization of electric vehicle development and production is a significant goal. The availability of charging stations helps to encourage the global transition to electric vehicles, which may lead to a decrease in traditional fuel consumption. Nevertheless, the rise in the number of electric vehicles is accompanied by sustainability issues, such as managing the grid’s electrical demand, building more charging stations, and providing electricity from renewable resources in an efficient and sustainable manner, especially in Saudi Arabia. This work focused on three challenges regarding the installation of fast charging stations (FCSs) for electric vehicles (EVs) on highways. The first challenge is choosing optimal locations on highways to address the range of anxiety of EV drivers. The second challenge is to fuel these FCSs using renewable resources, such as photovoltaic (PV) panels, to make FCSs sustainable. The last challenge is to design FCSs by considering both highway driving behavior and the available renewable energy resources in order to cover charging demand. All of these challenges should be considered while planning the EV charging infrastructure of Saudi highways from both technical and economic perspectives. Thus, using the HOMER ® Grid software (version 1.10.1 June 2023), locations on Saudi Arabian highways were selected based on the renewable resources of several roads that support a large number of vehicles traveling on them. These roads were the Makkah to Riyadh, Makkah to Abha, Riyadh to Dammam, Riyadh to NEOM, and Jeddah to NEOM roads. Electric vehicle charging stations with a capacity of 200 kW, 300 kW, and 500 kW were designed on these roads based on their natural renewable resources, which is PV energy. These roads are the most important roads in the Kingdom and witness heavy traffic. An economic study of these stations was carried out in addition to considering their efficiency. This study revealed that the 500 kW station is ideal for charging electric vehicles, with an annual energy production of 3,212,000 kWh. The 300 kW station had better efficiency but higher capital expenses. The 200 kW station could charge 6100 vehicles annually. The three stations on the Makkah to Riyadh, Makkah to Abha, and Riyadh to Dammam roads can charge 65,758 vehicles annually. The total cost of the project was USD 2,786,621, with the 300 kW plant having the highest initial investment, which can be potentially justified due to its higher power output. This study provides a comprehensive overview of the project costs and the potential returns of using solar power plants for charging electric vehicles.

Suggested Citation

  • Yassir Alhazmi, 2025. "Techno-Economic Design Analysis of Electric Vehicle Charging Stations Powered by Photovoltaic Technology on the Highways of Saudi Arabia," Energies, MDPI, vol. 18(2), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:315-:d:1565443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/2/315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/2/315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    2. Chen, Xianqing & Dong, Wei & Yang, Qiang, 2022. "Robust optimal capacity planning of grid-connected microgrid considering energy management under multi-dimensional uncertainties," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiyong Li & Zeyi Hua & Lin Tian & Peiwen Chen & Hao Dong, 2024. "Optimal Capacity Allocation for Life Cycle Multiobjective Integrated Energy Systems Considering Capacity Tariffs and Eco-Indicator 99," Sustainability, MDPI, vol. 16(20), pages 1-22, October.
    2. K. A. Indu Sailaja & K. Rahimunnisa, 2024. "Analysis of energy management in a hybrid renewable power system using MOA technique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18989-19011, July.
    3. Kerscher, Selina & Koirala, Arpan & Arboleya, Pablo, 2024. "Grid-optimal energy community planning from a systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Tan, Mao & Li, Zibin & Su, Yongxin & Ren, Yuling & Wang, Ling & Wang, Rui, 2024. "Dual time-scale robust optimization for energy management of distributed energy community considering source-load uncertainty," Renewable Energy, Elsevier, vol. 226(C).
    5. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.
    6. Lu, M.L. & Sun, Y.J. & Kokogiannakis, G. & Ma, Z.J., 2024. "Design of flexible energy systems for nearly/net zero energy buildings under uncertainty characteristics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    7. Wei Wei & Li Ye & Yi Fang & Yingchun Wang & Xi Chen & Zhenhua Li, 2023. "Optimal Allocation of Energy Storage Capacity in Microgrids Considering the Uncertainty of Renewable Energy Generation," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    8. Heping Jia & Qianxin Ma & Yun Li & Mingguang Liu & Dunnan Liu, 2023. "Integrating Electric Vehicles to Power Grids: A Review on Modeling, Regulation, and Market Operation," Energies, MDPI, vol. 16(17), pages 1-18, August.
    9. Tahir, Mustafa & Hu, Sideng & Zhu, Haoqi, 2024. "Strategic operation of electric vehicle in residential microgrid with vehicle-to-home features," Energy, Elsevier, vol. 308(C).
    10. Wenqi Hao & Yuxing Liu & Tao Wang & Mingmin Zhang, 2024. "Model for Joint Operation of Multi-Energy Systems in Energy and Frequency Regulation Ancillary Service Markets Considering Uncertainty," Energies, MDPI, vol. 18(1), pages 1-18, December.
    11. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2024. "A comprehensive framework for electric vehicle charging station siting along highways using weighted sum method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Fractional-order long-term price guidance mechanism based on bidirectional prediction with attention mechanism for electric vehicle charging," Energy, Elsevier, vol. 293(C).
    13. Güven, Aykut Fatih, 2024. "Integrating electric vehicles into hybrid microgrids: A stochastic approach to future-ready renewable energy solutions and management," Energy, Elsevier, vol. 303(C).
    14. Zahedmanesh, Arian & Verbic, Gregor & Rajarathnam, Gobinath & Weihs, Gustavo Fimbres & Shikata, Kentaro & Matsuda, Naohiko & Abbas, Ali, 2024. "Optimal design of greenfield energy hubs in the context of carbon neutral energy supply," Energy, Elsevier, vol. 305(C).
    15. Amirhossein Khazali & Yazan Al-Wreikat & Ewan J. Fraser & Suleiman M. Sharkh & Andrew J. Cruden & Mobin Naderi & Matthew J. Smith & Diane Palmer & Dan T. Gladwin & Martin P. Foster & Erica E. F. Balla, 2024. "Planning a Hybrid Battery Energy Storage System for Supplying Electric Vehicle Charging Station Microgrids," Energies, MDPI, vol. 17(15), pages 1-25, July.
    16. Wenshuai Bai & Dian Wang & Zhongquan Miao & Xiaorong Sun & Jiabin Yu & Jiping Xu & Yuqing Pan, 2023. "The Design and Application of Microgrid Supervisory System for Commercial Buildings Considering Dynamic Converter Efficiency," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    17. P, Balakumar & Ramu, Senthil Kumar & T, Vinopraba, 2024. "Optimizing electric vehicle charging in distribution networks: A dynamic pricing approach using internet of things and Bi-directional LSTM model," Energy, Elsevier, vol. 294(C).
    18. Li, Junhui & Yu, Zhenbo & Mu, Gang & Li, Baoju & Zhou, Jiaxu & Yan, Gangui & Zhu, Xingxu & Li, Cuiping, 2024. "An assessment methodology for the flexibility capacity of new power system based on two-stage robust optimization," Applied Energy, Elsevier, vol. 376(PB).
    19. Salari, Azam & Zeinali, Mahdi & Marzband, Mousa, 2024. "Model-free reinforcement learning-based energy management for plug-in electric vehicles in a cooperative multi-agent home microgrid with consideration of travel behavior," Energy, Elsevier, vol. 288(C).
    20. Fabian Zuñiga-Cortes & Eduardo Caicedo-Bravo & Juan D. Garcia-Racines, 2023. "Reference Framework Based on a Two-Stage Strategy for Sizing and Operational Management in Electrical Microgrid Planning," Sustainability, MDPI, vol. 15(19), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:315-:d:1565443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.