IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ipas0360544223012616.html
   My bibliography  Save this article

Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program

Author

Listed:
  • Singh, Bharat
  • Kumar, Ashwani

Abstract

Microgrid hybrid renewable energy sources with green energy have become a need for the environment. Electric vehicle (EV) contribution is another revolution in clean energy. The Micro-grid with hybrid renewable energy (HREs) is a cost-effective, eco-friendly solution.

Suggested Citation

  • Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012616
    DOI: 10.1016/j.energy.2023.127867
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223012616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    2. Venkatesan, Naveen & Solanki, Jignesh & Solanki, Sarika Khushalani, 2012. "Residential Demand Response model and impact on voltage profile and losses of an electric distribution network," Applied Energy, Elsevier, vol. 96(C), pages 84-91.
    3. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    4. Marzband, Mousa & Ghadimi, Majid & Sumper, Andreas & Domínguez-García, José Luis, 2014. "Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode," Applied Energy, Elsevier, vol. 128(C), pages 164-174.
    5. Ali Saleh Aziz & Mohammad Faridun Naim Tajuddin & Mohd Rafi Adzman & Makbul A. M. Ramli & Saad Mekhilef, 2019. "Energy Management and Optimization of a PV/Diesel/Battery Hybrid Energy System Using a Combined Dispatch Strategy," Sustainability, MDPI, vol. 11(3), pages 1-26, January.
    6. Amir, Vahid & Azimian, Mahdi, 2020. "Dynamic Multi-Carrier Microgrid Deployment Under Uncertainty," Applied Energy, Elsevier, vol. 260(C).
    7. Yimin Zhou & Zhifei Li & Xinyu Wu, 2018. "The Multiobjective Based Large-Scale Electric Vehicle Charging Behaviours Analysis," Complexity, Hindawi, vol. 2018, pages 1-16, October.
    8. Imani, Mahmood Hosseini & Ghadi, M. Jabbari & Ghavidel, Sahand & Li, Li, 2018. "Demand Response Modeling in Microgrid Operation: a Review and Application for Incentive-Based and Time-Based Programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 486-499.
    9. Bernal-Agustín, José L. & Dufo-López, Rodolfo & Rivas-Ascaso, David M., 2006. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 31(14), pages 2227-2244.
    10. Rajkumar, R.K. & Ramachandaramurthy, V.K. & Yong, B.L. & Chia, D.B., 2011. "Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy," Energy, Elsevier, vol. 36(8), pages 5148-5153.
    11. Fang, Xinli & Yang, Qiang & Dong, Wei, 2018. "Fuzzy decision based energy dispatch in offshore industrial microgrid with desalination process and multi-type DGs," Energy, Elsevier, vol. 148(C), pages 744-755.
    12. Fabrice Locment & Manuela Sechilariu, 2015. "Modeling and Simulation of DC Microgrids for Electric Vehicle Charging Stations," Energies, MDPI, vol. 8(5), pages 1-22, May.
    13. Amutha, W. Margaret & Rajini, V., 2016. "Cost benefit and technical analysis of rural electrification alternatives in southern India using HOMER," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 236-246.
    14. Qiu, Haifeng & Gu, Wei & Pan, Jing & Xu, Bin & Xu, Yinliang & Fan, Miao & Wu, Zhi, 2018. "Multi-interval-uncertainty constrained robust dispatch for AC/DC hybrid microgrids with dynamic energy storage degradation," Applied Energy, Elsevier, vol. 228(C), pages 205-214.
    15. Ramli, Makbul A.M. & Hiendro, Ayong & Al-Turki, Yusuf A., 2016. "Techno-economic energy analysis of wind/solar hybrid system: Case study for western coastal area of Saudi Arabia," Renewable Energy, Elsevier, vol. 91(C), pages 374-385.
    16. Bagheri, Mehdi & Shirzadi, Navid & Bazdar, Elahe & Kennedy, Christopher A., 2018. "Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 254-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salari, Azam & Zeinali, Mahdi & Marzband, Mousa, 2024. "Model-free reinforcement learning-based energy management for plug-in electric vehicles in a cooperative multi-agent home microgrid with consideration of travel behavior," Energy, Elsevier, vol. 288(C).
    2. K. A. Indu Sailaja & K. Rahimunnisa, 2024. "Analysis of energy management in a hybrid renewable power system using MOA technique," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18989-19011, July.
    3. Gönül, Ömer & Duman, A. Can & Güler, Önder, 2024. "A comprehensive framework for electric vehicle charging station siting along highways using weighted sum method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    4. Mark Kipngetich Kiptoo & Oludamilare Bode Adewuyi & Masahiro Furukakoi & Paras Mandal & Tomonobu Senjyu, 2023. "Integrated Multi-Criteria Planning for Resilient Renewable Energy-Based Microgrid Considering Advanced Demand Response and Uncertainty," Energies, MDPI, vol. 16(19), pages 1-25, September.
    5. Hu, Likun & Cao, Yi & Yin, Linfei, 2024. "Fractional-order long-term price guidance mechanism based on bidirectional prediction with attention mechanism for electric vehicle charging," Energy, Elsevier, vol. 293(C).
    6. P, Balakumar & Ramu, Senthil Kumar & T, Vinopraba, 2024. "Optimizing electric vehicle charging in distribution networks: A dynamic pricing approach using internet of things and Bi-directional LSTM model," Energy, Elsevier, vol. 294(C).
    7. Heping Jia & Qianxin Ma & Yun Li & Mingguang Liu & Dunnan Liu, 2023. "Integrating Electric Vehicles to Power Grids: A Review on Modeling, Regulation, and Market Operation," Energies, MDPI, vol. 16(17), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    2. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    5. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    6. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    7. Irshad, Ahmad Shah & Ludin, Gul Ahmad & Masrur, Hasan & Ahmadi, Mikaeel & Yona, Atsushi & Mikhaylov, Alexey & Krishnan, Narayanan & Senjyu, Tomonobu, 2023. "Optimization of grid-photovoltaic and battery hybrid system with most technically efficient PV technology after the performance analysis," Renewable Energy, Elsevier, vol. 207(C), pages 714-730.
    8. Ma, Qian & Huang, Xiang & Wang, Feng & Xu, Chao & Babaei, Reza & Ahmadian, Hossein, 2022. "Optimal sizing and feasibility analysis of grid-isolated renewable hybrid microgrids: Effects of energy management controllers," Energy, Elsevier, vol. 240(C).
    9. Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).
    10. Ahadi, Amir & Kang, Sang-Kyun & Lee, Jang-Ho, 2016. "A novel approach for optimal combinations of wind, PV, and energy storage system in diesel-free isolated communities," Applied Energy, Elsevier, vol. 170(C), pages 101-115.
    11. Sekeroglu, Ahmet & Erol, Demet, 2023. "Site selection modeling of hybrid renewable energy facilities using suitability index in spatial planning," Renewable Energy, Elsevier, vol. 219(P1).
    12. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    13. Lu, Hao & Lu, Lin & Wang, Yuanhao, 2016. "Numerical investigation of dust pollution on a solar photovoltaic (PV) system mounted on an isolated building," Applied Energy, Elsevier, vol. 180(C), pages 27-36.
    14. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    15. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    16. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    17. Clarke, Daniel P. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2015. "Multi-objective optimisation of renewable hybrid energy systems with desalination," Energy, Elsevier, vol. 88(C), pages 457-468.
    18. Lu, Hao & Zhao, Wenjun, 2018. "Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system," Applied Energy, Elsevier, vol. 220(C), pages 514-526.
    19. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    20. Torkan, Ramin & Ilinca, Adrian & Ghorbanzadeh, Milad, 2022. "A genetic algorithm optimization approach for smart energy management of microgrids," Renewable Energy, Elsevier, vol. 197(C), pages 852-863.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:pa:s0360544223012616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.